文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

Java 大数据处理中常用的函数有哪些?

2023-09-22 17:11

关注

随着数据量的不断增加,大数据处理已经成为了企业中不可或缺的一部分。在 Java 大数据处理中,一些常用的函数可以帮助开发人员更加高效地处理海量数据。本文将介绍 Java 大数据处理中常用的函数,并配以相应的演示代码。

一、MapReduce 函数

MapReduce 函数是大数据处理中最常用的函数之一。MapReduce 函数可以将大数据集分成小的数据集,并将其分发到不同的计算机上进行处理。MapReduce 函数有两个阶段:Map 阶段和 Reduce 阶段。Map 阶段将数据集分成小的数据集,而 Reduce 阶段将小的数据集合并成一个大的数据集。

下面是一个简单的 MapReduce 函数的演示代码:

public class WordCount {

    public static class Map extends Mapper<LongWritable, Text, Text, IntWritable> {
        private final static IntWritable one = new IntWritable(1);
        private Text word = new Text();

        public void map(LongWritable key, Text value, Context context)
                throws IOException, InterruptedException {
            String line = value.toString();
            StringTokenizer tokenizer = new StringTokenizer(line);
            while (tokenizer.hasMoreTokens()) {
                word.set(tokenizer.nextToken());
                context.write(word, one);
            }
        }
    }

    public static class Reduce extends Reducer<Text, IntWritable, Text, IntWritable> {
        public void reduce(Text key, Iterable<IntWritable> values, Context context)
                throws IOException, InterruptedException {
            int sum = 0;
            for (IntWritable val : values) {
                sum += val.get();
            }
            context.write(key, new IntWritable(sum));
        }
    }

    public static void main(String[] args) throws Exception {
        Configuration conf = new Configuration();

        Job job = Job.getInstance(conf, "word count");
        job.setJarByClass(WordCount.class);
        job.setMapperClass(Map.class);
        job.setCombinerClass(Reduce.class);
        job.setReducerClass(Reduce.class);
        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(IntWritable.class);

        FileInputFormat.addInputPath(job, new Path(args[0]));
        FileOutputFormat.setOutputPath(job, new Path(args[1]));

        job.waitForCompletion(true);
    }
}

二、Split 函数

Split 函数用于将大的数据集分成小的数据集。Split 函数可以根据需要分割数据集,例如按行或按列分割数据集。

下面是一个简单的 Split 函数的演示代码:

public class SplitData {

    public static void main(String[] args) throws Exception {
        Configuration conf = new Configuration();
        FileSystem fs = FileSystem.get(conf);

        Path inputFile = new Path(args[0]);
        Path outputDir = new Path(args[1]);

        if (fs.exists(outputDir)) {
            fs.delete(outputDir, true);
        }

        Job job = new Job(conf, "Split Data");

        job.setInputFormatClass(TextInputFormat.class);
        job.setOutputFormatClass(TextOutputFormat.class);

        job.setOutputKeyClass(NullWritable.class);
        job.setOutputValueClass(Text.class);

        job.setMapperClass(SplitMapper.class);

        FileInputFormat.setInputPaths(job, inputFile);
        FileOutputFormat.setOutputPath(job, outputDir);

        job.waitForCompletion(true);
    }

    public static class SplitMapper extends Mapper<LongWritable, Text, NullWritable, Text> {
        private Text outputValue = new Text();

        public void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
            String line = value.toString();

            // Split the data by "," and create separate lines
            String[] splitData = line.split(",");

            for (int i = 0; i < splitData.length; i++) {
                outputValue.set(splitData[i]);
                context.write(NullWritable.get(), outputValue);
            }
        }
    }
}

三、Join 函数

Join 函数用于将两个数据集合并成一个数据集。Join 函数可以根据需要将数据集按照特定的条件进行连接,例如按照共同的键进行连接。

下面是一个简单的 Join 函数的演示代码:

public class JoinData {

    public static void main(String[] args) throws Exception {
        Configuration conf = new Configuration();

        Job job = Job.getInstance(conf, "Join Data");
        job.setJarByClass(JoinData.class);

        MultipleInputs.addInputPath(job, new Path(args[0]), TextInputFormat.class, UserMapper.class);
        MultipleInputs.addInputPath(job, new Path(args[1]), TextInputFormat.class, VisitMapper.class);

        job.setReducerClass(JoinReducer.class);

        job.setOutputFormatClass(TextOutputFormat.class);
        FileOutputFormat.setOutputPath(job, new Path(args[2]));

        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(Text.class);

        job.waitForCompletion(true);
    }

    public static class UserMapper extends Mapper<LongWritable, Text, Text, Text> {
        private Text outputKey = new Text();
        private Text outputValue = new Text();

        public void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
            String[] fields = value.toString().split(",");

            String userId = fields[0];
            String name = fields[1];

            outputKey.set(userId);
            outputValue.set("user," + name);

            context.write(outputKey, outputValue);
        }
    }

    public static class VisitMapper extends Mapper<LongWritable, Text, Text, Text> {
        private Text outputKey = new Text();
        private Text outputValue = new Text();

        public void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
            String[] fields = value.toString().split(",");

            String userId = fields[0];
            String date = fields[1];
            String url = fields[2];

            outputKey.set(userId);
            outputValue.set("visit," + date + "," + url);

            context.write(outputKey, outputValue);
        }
    }

    public static class JoinReducer extends Reducer<Text, Text, Text, Text> {
        private Text outputKey = new Text();
        private Text outputValue = new Text();

        public void reduce(Text key, Iterable<Text> values, Context context)
                throws IOException, InterruptedException {
            String name = "";
            List<String> visits = new ArrayList<>();

            for (Text value : values) {
                String[] fields = value.toString().split(",");
                String type = fields[0];

                if (type.equals("user")) {
                    name = fields[1];
                } else if (type.equals("visit")) {
                    visits.add(fields[1] + "," + fields[2]);
                }
            }

            for (String visit : visits) {
                outputKey.set(key.toString() + "," + name);
                outputValue.set(visit);
                context.write(outputKey, outputValue);
            }
        }
    }
}

四、Aggregation 函数

Aggregation 函数用于在数据集上执行聚合操作,例如计算平均值、最大值和最小值等。

下面是一个简单的 Aggregation 函数的演示代码:

public class AggregationData {

    public static void main(String[] args) throws Exception {
        Configuration conf = new Configuration();

        Job job = Job.getInstance(conf, "Aggregation Data");
        job.setJarByClass(AggregationData.class);

        job.setMapperClass(AggregationMapper.class);
        job.setReducerClass(AggregationReducer.class);

        job.setOutputFormatClass(TextOutputFormat.class);
        FileOutputFormat.setOutputPath(job, new Path(args[1]));

        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(IntWritable.class);

        FileInputFormat.addInputPath(job, new Path(args[0]));

        job.waitForCompletion(true);
    }

    public static class AggregationMapper extends Mapper<LongWritable, Text, Text, IntWritable> {
        private Text outputKey = new Text();
        private IntWritable outputValue = new IntWritable();

        public void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
            String[] fields = value.toString().split(",");
            String city = fields[0];
            int temperature = Integer.parseInt(fields[1]);

            outputKey.set(city);
            outputValue.set(temperature);

            context.write(outputKey, outputValue);
        }
    }

    public static class AggregationReducer extends Reducer<Text, IntWritable, Text, IntWritable> {
        private IntWritable outputValue = new IntWritable();

        public void reduce(Text key, Iterable<IntWritable> values, Context context)
                throws IOException, InterruptedException {
            int sum = 0;
            int count = 0;

            for (IntWritable value : values) {
                sum += value.get();
                count++;
            }

            int average = sum / count;

            outputValue.set(average);

            context.write(key, outputValue);
        }
    }
}

总结:

本文介绍了 Java 大数据处理中常用的函数,并配以相应的演示代码。这些函数可以帮助开发人员更加高效地处理海量数据,提高数据处理的效率。

阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     807人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     351人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     314人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     433人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     221人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯