文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

C++实现图像目标区裁剪ImageCropping

2024-04-02 19:55

关注

场景需求

在做图像处理时,有时候会需要适当地进行一些裁剪工作,比如我做干涉测量领域,我们所要处理的图像区域是条纹所在区域,而原图又远大于我所想分析的目标区,此时就需要对图像进行裁剪,这样做的好处:

1)缩减计算量,提高程序运行速度;

2)裁剪后的图像尺寸正好是归一化的图像尺寸,如果有归一化的需求,可以直接用裁剪图像尺寸建立归一化数据网格图。

我就是为了计算柱面的拟合系数才写了这个函数,若要得到同光学领域标准一致的系数,需要先归一化数据,而归一化的范围就正好是裁剪的图像大小。

函数通俗易懂,就是用掩膜锁定目标区,再分析掩膜在原图中的上下左右边界,用roi提取出来即可。

话不多说,下方为具体实现函数和测试代码。

功能函数代码


cv::Mat ImageCropping(const cv::Mat &phase) {
	// 非测量区一般都进行了NaN处理,所以掩膜绘制只需要判断是否为NaN值即可
	cv::Mat mask = cv::Mat::zeros(phase.size(), CV_8UC1);
	mask.setTo(255, phase == phase);
	int roi_up = 10000;
	int roi_down = 0;
	int roi_left = 10000;
	int roi_right = 0;
	int row = phase.rows;
	int col = phase.cols;
	for (int i = 0; i < row; i++)
	{
		uchar *m = mask.ptr<uchar>(i);
		for (int j = 0; j < col; j++)
		{
			if (m[j] != 0)
			{
				if (j < roi_left)roi_left = j;
				if (j > roi_right)roi_right = j;
				if (i < roi_up)roi_up = i;
				if (i > roi_down)roi_down = i;
			}
		}
	}
	int w = roi_right - roi_left;
	int h = roi_down - roi_up;
	// 一般提取奇数尺寸,方便计算
	if (w % 2 == 0)w++;
	if (h % 2 == 0)h++;
	cv::Mat crop_phase = phase(cv::Rect(roi_left, roi_up, w, h)).clone();
	return crop_phase;
}

C++测试代码

#include<iostream>
#include<opencv2/opencv.hpp>
#include<ctime>
using namespace std;
using namespace cv;
cv::Mat ImageCropping(const cv::Mat &phase);
int main(void)
{
	cv::Mat phase(100, 100, CV_32FC1, nan(""));
	cv::circle(phase, cv::Point(50, 50), 30, 255, -1);
	cv::Mat crop = ImageCropping(phase);
	imshow("original", phase);
	imshow("result", crop);
	waitKey(0);
	system("pause");
	return 0;
}

cv::Mat ImageCropping(const cv::Mat &phase) {
	// 非测量区一般都进行了NaN处理,所以掩膜绘制只需要判断是否为NaN值即可
	cv::Mat mask = cv::Mat::zeros(phase.size(), CV_8UC1);
	mask.setTo(255, phase == phase);
	int roi_up = 10000;
	int roi_down = 0;
	int roi_left = 10000;
	int roi_right = 0;
	int row = phase.rows;
	int col = phase.cols;
	for (int i = 0; i < row; i++)
	{
		uchar *m = mask.ptr<uchar>(i);
		for (int j = 0; j < col; j++)
		{
			if (m[j] != 0)
			{
				if (j < roi_left)roi_left = j;
				if (j > roi_right)roi_right = j;
				if (i < roi_up)roi_up = i;
				if (i > roi_down)roi_down = i;
			}
		}
	}
	int w = roi_right - roi_left;
	int h = roi_down - roi_up;
	// 一般提取奇数尺寸,方便计算
	if (w % 2 == 0)w++;
	if (h % 2 == 0)h++;
	cv::Mat crop_phase = phase(cv::Rect(roi_left, roi_up, w, h)).clone();
	return crop_phase;
}

测试效果     

图1 裁剪前后对比图

在测试案例中,随机生成了一个100*100的数据矩阵,中间一个30半径的圆,也是我需要的目标区域,运用ImageCropping函数实现了目标区域的提取。

到此这篇关于C++实现图像目标区裁剪ImageCropping的文章就介绍到这了,更多相关C++目标裁剪ImageCropping内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     807人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     351人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     314人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     433人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     221人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯