文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

​理解 Spark 写入 API 的数据处理能力

2024-11-30 03:35

关注

这张图解释了 Apache Spark DataFrame 写入 API 的流程。它始于对写入数据的 API 调用,支持的格式包括 CSV、JSON 或 Parquet。流程根据选择的保存模式(追加、覆盖、忽略或报错)而分岔。每种模式执行必要的检查和操作,例如分区和数据写入处理。流程以数据的最终写入或错误结束,取决于这些检查和操作的结果。

Apache Spark 是一个开源的分布式计算系统,提供了强大的平台用于处理大规模数据。写入 API 是 Spark 数据处理能力的基本组成部分,允许用户将数据从他们的 Spark 应用程序写入或输出到不同的数据源。

一、理解 Spark 写入 API

1.数据源

Spark 支持将数据写入各种数据源,包括但不限于:

2.DataFrameWriter

写入 API 的核心类是 DataFrameWriter。它提供配置和执行写入操作的功能。通过在 DataFrame 或 Dataset 上调用 .write 方法获得 DataFrameWriter。

3.写入模式

指定 Spark 在写入数据时应如何处理现有数据的模式。常见的模式包括:

4.格式规范

可以使用 .format("formatType") 方法指定输出数据的格式,如 JSON、CSV、Parquet 等。

5.分区

为了实现有效的数据存储,可以使用 .partitionBy("column") 方法根据一个或多个列对输出数据进行分区。

6.配置选项

可以使用 .option("key", "value") 方法设置特定于数据源的各种选项,如压缩、CSV 文件的自定义分隔符等。

7.保存数据

最后,使用 .save("path") 方法将 DataFrame 写入指定的路径。其他方法如 .saveAsTable("tableName") 也可用于不同的写入场景。

from pyspark.sql import SparkSession
from pyspark.sql import Row
import os

# 初始化 SparkSession
spark = SparkSession.builder  
    .appName("DataFrameWriterSaveModesExample")  
    .getOrCreate()

# 示例数据
data = [
    Row(name="Alice", age=25, country="USA"),
    Row(name="Bob", age=30, country="UK")
]

# 附加数据用于追加模式
additional_data = [
    Row(name="Carlos", age=35, country="Spain"),
    Row(name="Daisy", age=40, country="Australia")
]

# 创建 DataFrames
df = spark.createDataFrame(data)
additional_df = spark.createDataFrame(additional_data)

# 定义输出路径
output_path = "output/csv_save_modes"

# 函数:列出目录中的文件
def list_files_in_directory(path):
    files = os.listdir(path)
    return files

# 显示初始 DataFrame
print("初始 DataFrame:")
df.show()

# 使用覆盖模式写入 CSV 格式
df.write.csv(output_path, mode="overwrite", header=True)
print("覆盖模式后的文件:", list_files_in_directory(output_path))

# 显示附加 DataFrame
print("附加 DataFrame:")
additional_df.show()

# 使用追加模式写入 CSV 格式
additional_df.write.csv(output_path, mode="append", header=True)
print("追加模式后的文件:", list_files_in_directory(output_path))

# 使用忽略模式写入 CSV 格式
additional_df.write.csv(output_path, mode="ignore", header=True)
print("忽略模式后的文件:", list_files_in_directory(output_path))

# 使用 errorIfExists 模式写入 CSV 格式
try:
    additional_df.write.csv(output_path, mode="errorIfExists", header=True)
except Exception as e:
    print("errorIfExists 模式中发生错误:", e)

# 停止 SparkSession
spark.stop()

二、Spark 架构概述

在 Apache Spark 中写入 DataFrame 遵循一种顺序流程。Spark 基于用户 DataFrame 操作创建逻辑计划,优化为物理计划,并分成阶段。系统按分区处理数据,对其进行日志记录以确保可靠性,并带有定义的分区和写入模式写入到本地存储。Spark 的架构确保在计算集群中高效管理和扩展数据写入任务。

从 Spark 内部架构的角度来看,Apache Spark 写入 API 涉及了解 Spark 如何在幕后管理数据处理、分发和写入操作。让我们来详细了解:

三、Spark 架构概述

四、在 Spark 内部写入数据

(1) 数据分布: Spark 中的数据分布在分区中。当启动写入操作时,Spark 首先确定这些分区中的数据布局。

(2) 写入任务执行: 每个分区的数据由一个任务处理。这些任务在不同的执行器之间并行执行。

写入模式和一致性:

(3) 格式处理和序列化: 根据指定的格式(例如,Parquet、CSV),Spark 使用相应的序列化器将数据转换为所需的格式。执行器处理此过程。

(4) 分区和文件管理:

(5) 错误处理和容错: 在写入操作期间,如果任务失败,Spark 可以重试任务,确保容错。但并非所有写入操作都是完全原子的,特定情况可能需要手动干预以确保数据完整性。

(6) 优化技术:

(7) 写入提交协议: Spark 使用写入提交协议来协调特定数据源的任务提交和中止过程,确保对写入数据的一致视图。

Spark 的写入 API 旨在实现高效和可靠的数据写入,它以复杂的方式编排任务分发、数据序列化和文件管理。它利用 Spark 的核心组件,如 DAG 调度器、任务调度器和 Catalyst 优化器,有效地执行写入操作。

来源:小技术君内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     813人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     354人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     318人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     435人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     224人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯