文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

C++单例模式实现线程池的示例代码

2023-05-16 20:41

关注

C语言单例模式实现线程池。

该代码中,使用了单例模式来创建线程池对象,保证了整个程序中只有一个线程池对象。

线程池中包含了任务队列、工作线程数组、互斥锁、条件变量等成员,通过这些成员来实现任务的提交和执行。

在主函数中,提交了10个任务,每个任务都是一个简单的打印数字的函数,最后等待所有任务执行完毕后销毁线程池。

#include <stdio.h>
#include <stdlib.h>
#include <pthread.h>

#define THREAD_POOL_SIZE 5

// 任务结构体
typedef struct {
    void (*task)(void*);
    void* arg;
} Task;

// 线程池结构体
typedef struct {
    Task* tasks; // 任务队列
    int size; // 任务队列大小
    int head; // 任务队列头指针
    int tail; // 任务队列尾指针
    int count; // 任务队列中任务数量
    pthread_mutex_t lock; // 互斥锁
    pthread_cond_t not_empty; // 非空条件变量
    pthread_cond_t not_full; // 非满条件变量
    int shutdown; // 线程池是否关闭
    pthread_t* threads; // 工作线程数组
    int thread_count; // 工作线程数量
} ThreadPool;

// 线程池单例结构体
typedef struct {
    ThreadPool* pool; // 线程池指针
} ThreadPoolSingleton;

static ThreadPoolSingleton* instance = NULL; // 线程池单例对象指针

// 工作线程函数
void* worker(void* arg) {
    ThreadPool* pool = (ThreadPool*)arg;
    while (1) {
        pthread_mutex_lock(&pool->lock);
        while (pool->count == 0 && !pool->shutdown) {
            pthread_cond_wait(&pool->not_empty, &pool->lock);
        }
        if (pool->count == 0 && pool->shutdown) {
            pthread_mutex_unlock(&pool->lock);
            pthread_exit(NULL);
        }
        Task task = pool->tasks[pool->head];
        pool->head = (pool->head + 1) % pool->size;
        pool->count--;
        pthread_cond_signal(&pool->not_full);
        pthread_mutex_unlock(&pool->lock);
        task.task(task.arg);
    }
    return NULL;
}

// 创建线程池函数
ThreadPool* create_thread_pool(int thread_count, int queue_size) {
    ThreadPool* pool = (ThreadPool*)malloc(sizeof(ThreadPool));
    pool->tasks = (Task*)malloc(sizeof(Task) * queue_size);
    pool->size = queue_size;
    pool->head = 0;
    pool->tail = 0;
    pool->count = 0;
    pthread_mutex_init(&pool->lock, NULL);
    pthread_cond_init(&pool->not_empty, NULL);
    pthread_cond_init(&pool->not_full, NULL);
    pool->shutdown = 0;
    pool->threads = (pthread_t*)malloc(sizeof(pthread_t) * thread_count);
    pool->thread_count = thread_count;
    for (int i = 0; i < thread_count; i++) {
        pthread_create(&pool->threads[i], NULL, worker, pool);
    }
    return pool;
}

// 销毁线程池函数
void destroy_thread_pool(ThreadPool* pool) {
    pthread_mutex_lock(&pool->lock);
    pool->shutdown = 1;
    pthread_mutex_unlock(&pool->lock);
    pthread_cond_broadcast(&pool->not_empty);
    for (int i = 0; i < pool->thread_count; i++) {
        pthread_join(pool->threads[i], NULL);
    }
    free(pool->threads);
    free(pool->tasks);
    pthread_mutex_destroy(&pool->lock);
    pthread_cond_destroy(&pool->not_empty);
    pthread_cond_destroy(&pool->not_full);
    free(pool);
}

// 提交任务函数
void submit_task(ThreadPool* pool, void (*task)(void*), void* arg) {
    pthread_mutex_lock(&pool->lock);
    while (pool->count == pool->size && !pool->shutdown) {
        pthread_cond_wait(&pool->not_full, &pool->lock);
    }
    if (pool->shutdown) {
        pthread_mutex_unlock(&pool->lock);
        return;
    }
    pool->tasks[pool->tail].task = task;
    pool->tasks[pool->tail].arg = arg;
    pool->tail = (pool->tail + 1) % pool->size;
    pool->count++;
    pthread_cond_signal(&pool->not_empty);
    pthread_mutex_unlock(&pool->lock);
}

// 任务函数
void task_func(void* arg) {
    int* num = (int*)arg;
    printf("task %d is running\n", *num);
    free(num);
}

// 任务包装函数
void* task_wrapper(void* arg) {
    TaskWrapper* wrapper = (TaskWrapper*)arg;
    submit_task(wrapper->pool, wrapper->task, wrapper->arg);
    free(wrapper);
    return NULL;
}

init_instance() {
	instance = (ThreadPoolSingleton*)malloc(sizeof(ThreadPoolSingleton));
	instance->pool = create_thread_pool(THREAD_POOL_SIZE, THREAD_POOL_SIZE);
}
// 获取线程池单例对象函数
ThreadPool* get_thread_pool_instance() {
    return instance->pool;
}

int main() {
	init_instance();	
    ThreadPool* pool = get_thread_pool_instance(); // 获取线程池单例对象
    for (int i = 0; i < 10; i++) {
        int* num = (int*)malloc(sizeof(int));
        *num = i;
        TaskWrapper* wrapper = (TaskWrapper*)malloc(sizeof(TaskWrapper));
        wrapper->pool = pool
		wrapper->task = task_func;
		wrapper->arg = num;
		pthread_t tid;
		pthread_create(&tid, NULL, task_wrapper, wrapper); // 提交任务
	}
	sleep(1); // 等待所有任务执行完毕
	destroy_thread_pool(pool); // 销毁线程池
	return 0;
}


到此这篇关于C++单例模式实现线程池的示例代码的文章就介绍到这了,更多相关C++单例模式实现线程池内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     813人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     354人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     318人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     435人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     224人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯