文章详情

短信预约信息系统项目管理师 报名、考试、查分时间动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

MySQL Shell import_table数据导入的实现

2022-05-11 04:33

关注
目录

1. import_table介绍

上期技术分享我们介绍了MySQL Load Data的4种常用的方法将文本数据导入到MySQL,这一期我们继续介绍另一款更加高效的数据导入工具,MySQL Shell 工具集中的import_table,该工具的全称是Parallel Table Import Utility,顾名思义,支持并发数据导入,该工具在MySQL Shell 8.0.23版本后,功能更加完善, 以下列举该工具的核心功能

2. Load Data 与 import table功能示例

该部分针对import table和Load Data相同的功能做命令示例演示,我们依旧以导入employees表的示例数据为例,演示MySQL Load Data的综合场景


## 示例数据如下
[root@10-186-61-162 tmp]# cat employees_01.csv
"10001","1953-09-02","Georgi","Facello","M","1986-06-26"
"10003","1959-12-03","Parto","Bamford","M","1986-08-28"
"10002","1964-06-02","Bezalel","Simmel","F","1985-11-21"
"10004","1954-05-01","Chirstian","Koblick","M","1986-12-01"
"10005","1955-01-21","Kyoichi","Maliniak","M","1989-09-12"
"10006","1953-04-20","Anneke","Preusig","F","1989-06-02"
"10007","1957-05-23","Tzvetan","Zielinski","F","1989-02-10"
"10008","1958-02-19","Saniya","Kalloufi","M","1994-09-15"
"10009","1952-04-19","Sumant","Peac","F","1985-02-18"
"10010","1963-06-01","Duangkaew","Piveteau","F","1989-08-24"

## 示例表结构
 10.186.61.162:3306  employees  SQL > desc emp;
+-------------+---------------+------+-----+---------+-------+
| Field       | Type          | Null | Key | Default | Extra |
+-------------+---------------+------+-----+---------+-------+
| emp_no      | int           | NO   | PRI | NULL    |       |
| birth_date  | date          | NO   |     | NULL    |       |
| first_name  | varchar(14)   | NO   |     | NULL    |       |
| last_name   | varchar(16)   | NO   |     | NULL    |       |
| full_name   | varchar(64)   | YES  |     | NULL    |       |  -- 表新增字段,导出数据文件中不存在
| gender      | enum('M','F') | NO   |     | NULL    |       |
| hire_date   | date          | NO   |     | NULL    |       |
| modify_date | datetime      | YES  |     | NULL    |       |  -- 表新增字段,导出数据文件中不存在
| delete_flag | varchar(1)    | YES  |     | NULL    |       |  -- 表新增字段,导出数据文件中不存在
+-------------+---------------+------+-----+---------+-------+

2.1 用Load Data方式导入数据

具体参数含义不做说明,需要了解语法规则及含义可查看系列上一篇文章<MySQL Load Data的多种用法>


load data infile '/data/mysql/3306/tmp/employees_01.csv'
into table employees.emp
character set utf8mb4
fields terminated by ','
enclosed by '"'
lines terminated by '\n'
(@C1,@C2,@C3,@C4,@C5,@C6)
set emp_no=@C1,
    birth_date=@C2,
    first_name=upper(@C3),
    last_name=lower(@C4),
    full_name=concat(first_name,' ',last_name),
    gender=@C5,
    hire_date=@C6 ,
    modify_date=now(),
    delete_flag=if(hire_date<'1988-01-01','Y','N');

2.2 用import_table方式导入数据


util.import_table(
    [
        "/data/mysql/3306/tmp/employees_01.csv",
    ],
    {
        "schema": "employees", 
        "table": "emp",
        "dialect": "csv-unix",
        "skipRows": 0,
        "showProgress": True,
        "characterSet": "utf8mb4",
        "columns": [1,2,3,4,5,6],                   ## 文件中多少个列就用多少个序号标识就行
        "decodeColumns": {
            "emp_no":       "@1",                   ## 对应文件中的第1列
            "birth_date":   "@2",                   ## 对应文件中的第2个列
            "first_name":   "upper(@3)",            ## 对应文件中的第3个列,并做转为大写的处理
            "last_name":    "lower(@4)",            ## 对应文件中的第4个列,并做转为大写的处理
            "full_name":    "concat(@3,' ',@4)",    ## 将文件中的第3,4列合并成一列生成表中字段值
            "gender":       "@5",                   ## 对应文件中的第5个列
            "hire_date":    "@6",                   ## 对应文件中的第6个列
            "modify_date":  "now()",                ## 用函数生成表中字段值
            "delete_flag":  "if(@6<'1988-01-01','Y','N')"  ## 基于文件中第6列做逻辑判断,生成表中对应字段值
        }
    })

3. import_table特定功能

3.1 多文件导入(模糊匹配)


## 在导入前我生成好了3分单独的employees文件,导出的结构一致
[root@10-186-61-162 tmp]# ls -lh
总用量 1.9G
-rw-r----- 1 mysql mysql  579 3月  24 19:07 employees_01.csv
-rw-r----- 1 mysql mysql  584 3月  24 18:48 employees_02.csv
-rw-r----- 1 mysql mysql  576 3月  24 18:48 employees_03.csv
-rw-r----- 1 mysql mysql 1.9G 3月  26 17:15 sbtest1.csv

## 导入命令,其中对对文件用employees_*做模糊匹配
util.import_table(
    [
        "/data/mysql/3306/tmp/employees_*",
    ],
    {
        "schema": "employees", 
        "table": "emp",
        "dialect": "csv-unix",
        "skipRows": 0,
        "showProgress": True,
        "characterSet": "utf8mb4",
        "columns": [1,2,3,4,5,6],                   ## 文件中多少个列就用多少个序号标识就行
        "decodeColumns": {
            "emp_no":       "@1",                   ## 对应文件中的第1列
            "birth_date":   "@2",                   ## 对应文件中的第2个列
            "first_name":   "upper(@3)",            ## 对应文件中的第3个列,并做转为大写的处理
            "last_name":    "lower(@4)",            ## 对应文件中的第4个列,并做转为大写的处理
            "full_name":    "concat(@3,' ',@4)",    ## 将文件中的第3,4列合并成一列生成表中字段值
            "gender":       "@5",                   ## 对应文件中的第5个列
            "hire_date":    "@6",                   ## 对应文件中的第6个列
            "modify_date":  "now()",                ## 用函数生成表中字段值
            "delete_flag":  "if(@6<'1988-01-01','Y','N')"  ## 基于文件中第6列做逻辑判断,生成表中对应字段值
        }
    })
    
## 导入命令,其中对要导入的文件均明确指定其路径
util.import_table(
    [
        "/data/mysql/3306/tmp/employees_01.csv",
        "/data/mysql/3306/tmp/employees_02.csv",
        "/data/mysql/3306/tmp/employees_03.csv"
    ],
    {
        "schema": "employees", 
        "table": "emp",
        "dialect": "csv-unix",
        "skipRows": 0,
        "showProgress": True,
        "characterSet": "utf8mb4",
        "columns": [1,2,3,4,5,6],                   ## 文件中多少个列就用多少个序号标识就行
        "decodeColumns": {
            "emp_no":       "@1",                   ## 对应文件中的第1列
            "birth_date":   "@2",                   ## 对应文件中的第2个列
            "first_name":   "upper(@3)",            ## 对应文件中的第3个列,并做转为大写的处理
            "last_name":    "lower(@4)",            ## 对应文件中的第4个列,并做转为大写的处理
            "full_name":    "concat(@3,' ',@4)",    ## 将文件中的第3,4列合并成一列生成表中字段值
            "gender":       "@5",                   ## 对应文件中的第5个列
            "hire_date":    "@6",                   ## 对应文件中的第6个列
            "modify_date":  "now()",                ## 用函数生成表中字段值
            "delete_flag":  "if(@6<'1988-01-01','Y','N')"  ## 基于文件中第6列做逻辑判断,生成表中对应字段值
        }
    })

3.2 并发导入

在实验并发导入前我们创建一张1000W的sbtest1表(大约2G数据),做并发模拟,import_table用threads参数作为并发配置, 默认为8个并发.


## 导出测试需要的sbtest1数据
[root@10-186-61-162 tmp]# ls -lh
总用量 1.9G
-rw-r----- 1 mysql mysql  579 3月  24 19:07 employees_01.csv
-rw-r----- 1 mysql mysql  584 3月  24 18:48 employees_02.csv
-rw-r----- 1 mysql mysql  576 3月  24 18:48 employees_03.csv
-rw-r----- 1 mysql mysql 1.9G 3月  26 17:15 sbtest1.csv

## 开启threads为8个并发
util.import_table(
    [
        "/data/mysql/3306/tmp/sbtest1.csv",
    ],
    {
        "schema": "demo", 
        "table": "sbtest1",
        "dialect": "csv-unix",
        "skipRows": 0,
        "showProgress": True,
        "characterSet": "utf8mb4",
        "threads": "8"
    })

3.3 导入速率控制

可以通过maxRatethreads来控制每个并发线程的导入数据,如,当前配置线程为4个,每个线程的速率为2M/s,则最高不会超过8M/s


util.import_table(
    [
        "/data/mysql/3306/tmp/sbtest1.csv",
    ],
    {
        "schema": "demo", 
        "table": "sbtest1",
        "dialect": "csv-unix",
        "skipRows": 0,
        "showProgress": True,
        "characterSet": "utf8mb4",
        "threads": "4",
        "maxRate": "2M"
    })

3.4 自定义chunk大小

默认的chunk大小为50M,我们可以调整chunk的大小,减少事务大小,如我们将chunk大小调整为1M,则每个线程每次导入的数据量也相应减少


util.import_table(
    [
        "/data/mysql/3306/tmp/sbtest1.csv",
    ],
    {
        "schema": "demo", 
        "table": "sbtest1",
        "dialect": "csv-unix",
        "skipRows": 0,
        "showProgress": True,
        "characterSet": "utf8mb4",
        "threads": "4",
        "bytesPerChunk": "1M",
        "maxRate": "2M"
    })

4. Load Data vs import_table性能对比


-- Load Data语句
load data infile '/data/mysql/3306/tmp/sbtest1.csv'
into table demo.sbtest1
character set utf8mb4
fields terminated by ','
enclosed by '"'
lines terminated by '\n'

-- import_table语句
util.import_table(
    [
        "/data/mysql/3306/tmp/sbtest1.csv",
    ],
    {
        "schema": "demo", 
        "table": "sbtest1",
        "dialect": "csv-unix",
        "skipRows": 0,
        "showProgress": True,
        "characterSet": "utf8mb4"
    })

可以看到,Load Data耗时约5分钟,而import_table则只要不到一半的时间即可完成数据导入,效率高一倍以上(虚拟机环境磁盘IO能力有限情况下)

5. 技术总结

到此这篇关于MySQL import_table数据导入的实现的文章就介绍到这了,更多相关MySQL import_table数据导入内容请搜索自学编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持自学编程网!

阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     807人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     351人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     314人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     433人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     221人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-数据库
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯