文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

Python人工智能之混合高斯模型运动目标检测详解分析

2024-04-02 19:55

关注

【人工智能项目】混合高斯模型运动目标检测

在这里插入图片描述

本次工作主要对视频中运动中的人或物的边缘背景进行检测。
那么走起来瓷!!!

原视频

在这里插入图片描述

高斯算法提取工作


import cv2
import numpy as np

# 高斯算法
class gaussian:
    def __init__(self):
        self.mean = np.zeros((1, 3))
        self.covariance = 0
        self.weight = 0;
        self.Next = None
        self.Previous = None

class Node:
    def __init__(self):
        self.pixel_s = None
        self.pixel_r = None
        self.no_of_components = 0
        self.Next = None

class Node1:
    def __init__(self):
        self.gauss = None
        self.no_of_comp = 0
        self.Next = None

covariance0 = 11.0
def Create_gaussian(info1, info2, info3):
    ptr = gaussian()
    if (ptr is not None):
        ptr.mean[1, 1] = info1
        ptr.mean[1, 2] = info2
        ptr.mean[1, 3] = info3
        ptr.covariance = covariance0
        ptr.weight = 0.002
        ptr.Next = None
        ptr.Previous = None

    return ptr

def Create_Node(info1, info2, info3):
    N_ptr = Node()
    if (N_ptr is not None):
        N_ptr.Next = None
        N_ptr.no_of_components = 1
        N_ptr.pixel_s = N_ptr.pixel_r = Create_gaussian(info1, info2, info3)

    return N_ptr

List_node = []
def Insert_End_Node(n):
    List_node.append(n)

List_gaussian = []
def Insert_End_gaussian(n):
    List_gaussian.append(n)

def Delete_gaussian(n):
    List_gaussian.remove(n);

class Process:
    def __init__(self, alpha, firstFrame):
        self.alpha = alpha
        self.background = firstFrame

    def get_value(self, frame):
        self.background = frame * self.alpha + self.background * (1 - self.alpha)
        return cv2.absdiff(self.background.astype(np.uint8), frame)

def denoise(frame):
    frame = cv2.medianBlur(frame, 5)
    frame = cv2.GaussianBlur(frame, (5, 5), 0)

    return frame

capture = cv2.VideoCapture('1.mp4')
ret, orig_frame = capture.read( )
if ret is True:
    value1 = Process(0.1, denoise(orig_frame))
    run = True
else:
    run = False

while (run):
    ret, frame = capture.read()
    value = False;
    if ret is True:
        cv2.imshow('input', denoise(frame))
        grayscale = value1.get_value(denoise(frame))
        ret, mask = cv2.threshold(grayscale, 15, 255, cv2.THRESH_BINARY)
        cv2.imshow('mask', mask)
        key = cv2.waitKey(10) & 0xFF
    else:
        break

    if key == 27:
        break

    if value == True:
        orig_frame = cv2.resize(orig_frame, (340, 260), interpolation=cv2.INTER_CUBIC)
        orig_frame = cv2.cvtColor(orig_frame, cv2.COLOR_BGR2GRAY)
        orig_image_row = len(orig_frame)
        orig_image_col = orig_frame[0]

        bin_frame = np.zeros((orig_image_row, orig_image_col))
        value = []

        for i in range(0, orig_image_row):
            for j in range(0, orig_image_col):
                N_ptr = Create_Node(orig_frame[i][0], orig_frame[i][1], orig_frame[i][2])
                if N_ptr is not None:
                    N_ptr.pixel_s.weight = 1.0
                    Insert_End_Node(N_ptr)
                else:
                    print("error")
                    exit(0)

        nL = orig_image_row
        nC = orig_image_col

        dell = np.array((1, 3));
        mal_dist = 0.0;
        temp_cov = 0.0;
        alpha = 0.002;
        cT = 0.05;
        cf = 0.1;
        cfbar = 1.0 - cf;
        alpha_bar = 1.0 - alpha;
        prune = -alpha * cT;
        cthr = 0.00001;
        var = 0.0
        muG = 0.0;
        muR = 0.0;
        muB = 0.0;
        dR = 0.0;
        dB = 0.0;
        dG = 0.0;
        rval = 0.0;
        gval = 0.0;
        bval = 0.0;

        while (1):
            duration3 = 0.0;
            count = 0;
            count1 = 0;
            List_node1 = List_node;
            counter = 0;
            duration = cv2.getTickCount( );
            for i in range(0, nL):
                r_ptr = orig_frame[i]
                b_ptr = bin_frame[i]

                for j in range(0, nC):
                    sum = 0.0;
                    sum1 = 0.0;
                    close = False;
                    background = 0;

                    rval = r_ptr[0][0];
                    gval = r_ptr[0][0];
                    bval = r_ptr[0][0];

                    start = List_node1[counter].pixel_s;
                    rear = List_node1[counter].pixel_r;
                    ptr = start;

                    temp_ptr = None;
                    if (List_node1[counter].no_of_component > 4):
                        Delete_gaussian(rear);
                        List_node1[counter].no_of_component = List_node1[counter].no_of_component - 1;

                    for k in range(0, List_node1[counter].no_of_component):
                        weight = List_node1[counter].weight;
                        mult = alpha / weight;
                        weight = weight * alpha_bar + prune;
                        if (close == False):
                            muR = ptr.mean[0];
                            muG = ptr.mean[1];
                            muB = ptr.mean[2];

                            dR = rval - muR;
                            dG = gval - muG;
                            dB = bval - muB;

                            var = ptr.covariance;

                            mal_dist = (dR * dR + dG * dG + dB * dB);

                            if ((sum < cfbar) and (mal_dist < 16.0 * var * var)):
                                background = 255;

                            if (mal_dist < (9.0 * var * var)):
                                weight = weight + alpha;
                                if mult < 20.0 * alpha:
                                    mult = mult;
                                else:
                                    mult = 20.0 * alpha;

                                close = True;

                                ptr.mean[0] = muR + mult * dR;
                                ptr.mean[1] = muG + mult * dG;
                                ptr.mean[2] = muB + mult * dB;
                                temp_cov = var + mult * (mal_dist - var);
                                if temp_cov < 5.0:
                                    ptr.covariance = 5.0
                                else:
                                    if (temp_cov > 20.0):
                                        ptr.covariance = 20.0
                                    else:
                                        ptr.covariance = temp_cov;

                                temp_ptr = ptr;

                        if (weight < -prune):
                            ptr = Delete_gaussian(ptr);
                            weight = 0;
                            List_node1[counter].no_of_component = List_node1[counter].no_of_component - 1;
                        else:
                            sum += weight;
                            ptr.weight = weight;

                        ptr = ptr.Next;

                    if (close == False):
                        ptr = gaussian( );
                        ptr.weight = alpha;
                        ptr.mean[0] = rval;
                        ptr.mean[1] = gval;
                        ptr.mean[2] = bval;
                        ptr.covariance = covariance0;
                        ptr.Next = None;
                        ptr.Previous = None;
                        Insert_End_gaussian(ptr);
                        List_gaussian.append(ptr);
                        temp_ptr = ptr;
                        List_node1[counter].no_of_components = List_node1[counter].no_of_components + 1;

                    ptr = start;
                    while (ptr != None):
                        ptr.weight = ptr.weight / sum;
                        ptr = ptr.Next;

                    while (temp_ptr != None and temp_ptr.Previous != None):
                        if (temp_ptr.weight <= temp_ptr.Previous.weight):
                            break;
                        else:
                            next = temp_ptr.Next;
                            previous = temp_ptr.Previous;
                            if (start == previous):
                                start = temp_ptr;
                                previous.Next = next;
                                temp_ptr.Previous = previous.Previous;
                                temp_ptr.Next = previous;
                            if (previous.Previous != None):
                                previous.Previous.Next = temp_ptr;
                            if (next != None):
                                next.Previous = previous;
                            else:
                                rear = previous;
                                previous.Previous = temp_ptr;

                        temp_ptr = temp_ptr.Previous;

                    List_node1[counter].pixel_s = start;
                    List_node1[counter].pixel_r = rear;
                    counter = counter + 1;

capture.release()
cv2.destroyAllWindows()

在这里插入图片描述

createBackgroundSubtractorMOG2

在这里插入图片描述

背景建模包括两个主要步骤:

在第一步中,计算背景的初始模型,而在第二步中,更新该模型以适应场景中可能的变化。


import cv2

#构造VideoCapture对象
cap = cv2.VideoCapture('1.mp4')

# 创建一个背景分割器
# createBackgroundSubtractorMOG2()函数里,可以指定detectShadows的值
# detectShadows=True,表示检测阴影,反之不检测阴影。默认是true
fgbg  = cv2.createBackgroundSubtractorMOG2()
while True :
    ret, frame = cap.read() # 读取视频
    fgmask = fgbg.apply(frame) # 背景分割
    cv2.imshow('frame', fgmask) # 显示分割结果
    if cv2.waitKey(100) & 0xff == ord('q'):
        break
cap.release()
cv2.destroyAllWindows()

在这里插入图片描述

小结

点赞评论走起来,瓷们!!!

在这里插入图片描述

到此这篇关于Python人工智能之混合高斯模型运动目标检测详解分析的文章就介绍到这了,更多相关Python 高斯模型运动目标检测内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     813人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     354人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     318人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     435人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     224人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯