这篇文章主要介绍“python深度学习tensorflow1.0参数和特征提取的方法”,在日常操作中,相信很多人在python深度学习tensorflow1.0参数和特征提取的方法问题上存在疑惑,小编查阅了各式资料,整理出简单好用的操作方法,希望对大家解答”python深度学习tensorflow1.0参数和特征提取的方法”的疑惑有所帮助!接下来,请跟着小编一起来学习吧!
tf.trainable_variables()提取训练参数
在tf中,参与训练的参数可用 tf.trainable_variables()提取出来,如:
#取出所有参与训练的参数params=tf.trainable_variables()print("Trainable variables:------------------------")#循环列出参数for idx, v in enumerate(params): print(" param {:3}: {:15} {}".format(idx, str(v.get_shape()), v.name))
这里只能查看参数的shape和name,并没有具体的值。如果要查看参数具体的值的话,必须先初始化,即:
sess=tf.Session()sess.run(tf.global_variables_initializer())
同理,我们也可以提取图片经过训练后的值。图片经过卷积后变成了特征,要提取这些特征,必须先把图片feed进去。
具体实例
# -*- coding: utf-8 -*-"""Created on Sat Jun 3 12:07:59 2017@author: Administrator"""import tensorflow as tffrom skimage import io,transformimport numpy as np#-----------------构建网络----------------------#占位符x=tf.placeholder(tf.float32,shape=[None,100,100,3],name='x')y_=tf.placeholder(tf.int32,shape=[None,],name='y_')#第一个卷积层(100——>50)conv1=tf.layers.conv2d( inputs=x, filters=32, kernel_size=[5, 5], padding="same", activation=tf.nn.relu, kernel_initializer=tf.truncated_normal_initializer(stddev=0.01))pool1=tf.layers.max_pooling2d(inputs=conv1, pool_size=[2, 2], strides=2)#第二个卷积层(50->25)conv2=tf.layers.conv2d( inputs=pool1, filters=64, kernel_size=[5, 5], padding="same", activation=tf.nn.relu, kernel_initializer=tf.truncated_normal_initializer(stddev=0.01))pool2=tf.layers.max_pooling2d(inputs=conv2, pool_size=[2, 2], strides=2)#第三个卷积层(25->12)conv3=tf.layers.conv2d( inputs=pool2, filters=128, kernel_size=[3, 3], padding="same", activation=tf.nn.relu, kernel_initializer=tf.truncated_normal_initializer(stddev=0.01))pool3=tf.layers.max_pooling2d(inputs=conv3, pool_size=[2, 2], strides=2)#第四个卷积层(12->6)conv4=tf.layers.conv2d( inputs=pool3, filters=128, kernel_size=[3, 3], padding="same", activation=tf.nn.relu, kernel_initializer=tf.truncated_normal_initializer(stddev=0.01))pool4=tf.layers.max_pooling2d(inputs=conv4, pool_size=[2, 2], strides=2)re1 = tf.reshape(pool4, [-1, 6 * 6 * 128])#全连接层dense1 = tf.layers.dense(inputs=re1, units=1024, activation=tf.nn.relu, kernel_initializer=tf.truncated_normal_initializer(stddev=0.01), kernel_regularizer=tf.nn.l2_loss)dense2= tf.layers.dense(inputs=dense1, units=512, activation=tf.nn.relu, kernel_initializer=tf.truncated_normal_initializer(stddev=0.01), kernel_regularizer=tf.nn.l2_loss)logits= tf.layers.dense(inputs=dense2, units=5, activation=None, kernel_initializer=tf.truncated_normal_initializer(stddev=0.01), kernel_regularizer=tf.nn.l2_loss)#---------------------------网络结束---------------------------#%%#取出所有参与训练的参数params=tf.trainable_variables()print("Trainable variables:------------------------")#循环列出参数for idx, v in enumerate(params): print(" param {:3}: {:15} {}".format(idx, str(v.get_shape()), v.name))#%%#读取图片img=io.imread('d:/cat.jpg')#resize成100*100img=transform.resize(img,(100,100))#三维变四维(100,100,3)-->(1,100,100,3)img=img[np.newaxis,:,:,:]img=np.asarray(img,np.float32)sess=tf.Session()sess.run(tf.global_variables_initializer()) #提取最后一个全连接层的参数 W和bW=sess.run(params[26])b=sess.run(params[27])#提取第二个全连接层的输出值作为特征 fea=sess.run(dense2,feed_dict={x:img})
最后一条语句就是提取某层的数据输出作为特征。
注意:这个程序并没有经过训练,因此提取出的参数只是初始化的参数。
到此,关于“python深度学习tensorflow1.0参数和特征提取的方法”的学习就结束了,希望能够解决大家的疑惑。理论与实践的搭配能更好的帮助大家学习,快去试试吧!若想继续学习更多相关知识,请继续关注编程网网站,小编会继续努力为大家带来更多实用的文章!