文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

PyTorch中torch.matmul()函数怎么使用

2023-07-06 03:09

关注

这篇文章主要介绍了PyTorch中torch.matmul()函数怎么使用的相关知识,内容详细易懂,操作简单快捷,具有一定借鉴价值,相信大家阅读完这篇PyTorch中torch.matmul()函数怎么使用文章都会有所收获,下面我们一起来看看吧。

一、函数介绍

pytorch中两个张量的乘法可以分为两种:

torch.matmul(input, other) → Tensor
计算两个张量input和other的矩阵乘积
【注意】:matmul函数没有强制规定维度和大小,可以用利用广播机制进行不同维度的相乘操作。

二、常见用法

torch.matmul()也是一种类似于矩阵相乘操作的tensor连乘操作。但是它可以利用python中的广播机制,处理一些维度不同的tensor结构进行相乘操作。这也是该函数与torch.bmm()区别所在。

2.1 两个一维向量的乘积运算

若两个tensor都是一维的,则返回两个向量的点积运算结果:

import torchx = torch.tensor([1,2])y = torch.tensor([3,4])print(x,y)print(torch.matmul(x,y),torch.matmul(x,y).size())

运行结果:

tensor([1, 2]) tensor([3, 4])
tensor(11) torch.Size([])

PyTorch中torch.matmul()函数怎么使用

2.2 两个二维矩阵的乘积运算

若两个tensor都是二维的,则返回两个矩阵的矩阵相乘结果:

import torchx = torch.tensor([[1,2],[3,4]])y = torch.tensor([[5,6,7],[8,9,10]])print(torch.matmul(x,y),torch.matmul(x,y).size())

运行结果:

tensor([[21, 24, 27],[47, 54, 61]]) torch.Size([2, 3])

PyTorch中torch.matmul()函数怎么使用

2.3 一个一维向量和一个二维矩阵的乘积运算

若input为一维,other为二维,则先将input的一维向量扩充到二维(维数前面插入长度为1的新维度),然后进行矩阵乘积,得到结果后再将此维度去掉,得到的与input的维度相同。

import torchx = torch.tensor([1,2])y = torch.tensor([[5,6,7],[8,9,10]])print(torch.matmul(x,y),torch.matmul(x,y).size())

运行结果:

tensor([21, 24, 27]) torch.Size([3])

【分析】:首先将x维度从(2)扩充为(,2),然后将x(,2) 与y(2,3)进行相乘,得到(,3),最后去掉一维部分,得到(3)

PyTorch中torch.matmul()函数怎么使用

2.4 一个二维矩阵和一个一维向量的乘积运算

若input为二维,other为一维,则先将other的一维向量扩充到二维(维数后面插入长度为1的新维度),然后进行矩阵乘积,得到结果后再将此维度去掉,得到的与other的维度相同。

import torchx = torch.tensor([[1,2,3],[4,5,6]])y = torch.tensor([7,8,9])print(torch.matmul(x,y),'\n',torch.matmul(x,y).size())

运行结果:

tensor([ 50, 122])
torch.Size([2])

【分析】:首先y维度从(3)扩充为(3,),然后将x(2,3)与x(2,)进行相乘,得到(2,),最后去掉一维部分,得到(2)

【总结】:2.3和2.4基本类似,唯一不同的是2.3中一维向量和二维矩阵的乘积运算需要在一维向量前面插入长度为1的新维度(x为一维向量,y为二维矩阵);2.4中二维矩阵和一维向量的乘积运算需要在一维向量后面插入长度为1的新维度(x为二维矩阵,y为一维向量)。

关于“PyTorch中torch.matmul()函数怎么使用”这篇文章的内容就介绍到这里,感谢各位的阅读!相信大家对“PyTorch中torch.matmul()函数怎么使用”知识都有一定的了解,大家如果还想学习更多知识,欢迎关注编程网行业资讯频道。

阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     813人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     354人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     318人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     435人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     224人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯