文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

python中数组和列表的简单实例

2024-04-02 19:55

关注

#环境win64+anaconda+python3.6

list & array

(1)list不具有array的全部属性(如维度、转置等)

代码1:

#eg1_1
import numpy as np
a = np.array([[1,2,0,1],[1,6,9,55],[7,8,9,5]])#a为数组
print(a.T)
 
#Result:
[[ 1  1  7]
 [ 2  6  8]
 [ 0  9  9]
 [ 1 55  5]]
 
#eg1_2
a = [[1,2,0,1],[1,6,9,55],[7,8,9,5]] #a为列表
print(a.T)
 
#Result:
'list' object has no attribute 'T'

代码2:

#eg1_3
import numpy as np
a=np.array([[1,2,3],[1,1,4],[1,5,1]])
print(a.shape)
 
#Result:
(3, 3)
 
#eg1_4
a=[[1,2,3],[1,1,4],[1,5,1]]
print(a.shape)
 
#Result
'list' object has no attribute 'shape'

(顺带一提,如何把一个数组转化为列向量:↓)

import numpy as np
a=np.array([[1,2,3],[1,1,4],[1,5,1]])
a=a.reshape(-1,1)
print(a)
 
#Result:
[[1]
 [2]
 [3]
 [1]
 [1]
 [4]
 [1]
 [5]
 [1]]

(2)a[:m]的含义,a可以是列表或者数组,但是无论是哪种情况,a[:0]为空

#eg2_1
import numpy as np
a=np.array([[4,1,2],
            [7,4,10],
            [12,17,88]])
#a=np.array([(4,1,2),
#            (7,4,10),
#            (12,17,88)]) 这两个a中[和(不一样,其实它们完全一样
print(a[:0])
print(a[:1])
print(a[:2])
 
#Result:
[]
[[4 1 2]]
[[ 4  1  2]
 [ 7  4 10]]
 
#eg2_1
a=[(4,1,2),(7,4,10),(12,17,88)]
print(a[:0])
print(a[:1])
print(a[:2])
 
 
#Result:
[]
[(4, 1, 2)]
[(4, 1, 2), (7, 4, 10)]

(3)array和list关于“==”的计算

#eg3_1
import numpy as np
a=np.array(['dog','cat','car'])
b=np.array(['dog','cat','trunk'])
acc = (np.mean(a == b))
print(acc)
 
#Result
0.6666666666666666
 
#eg3_2
import numpy as np
a=['dog','cat','car']
b=['dog','cat','trunk']
acc = (np.mean(a == b))
print(acc)
 
#Result
0.0

(4)array和list关于“*”的计算

from numpy import *
#a为数组
a=array([[1,2,3],
   [4,5,6]])
b=4*a
print(b)    
 
[[ 4  8 12]
 [16 20 24]]
 
 
from numpy import *
#a为列表
a=([[1,2,3],
   [4,5,6]])
b=4*a
print(b)
 
[[1, 2, 3], [4, 5, 6], [1, 2, 3], [4, 5, 6], [1, 2, 3], [4, 5, 6], [1, 2, 3], [4, 5, 6]]

python列表和Numpy数组的区别

1、二者都可以用于处理多维数组。

Numpy中的ndarray对象用于处理多维数组,它作为一个快速而灵活的大数据容器。Python列表可以存储一维数组,通过列表的嵌套可以实现多维数组。

2、存储效率和输入输出性能不同。

Numpy专门针对数组的操作和运算进行了设计,存储效率和输入输出性能远优于Python中的嵌套列表,数组越大,Numpy的优势就越明显。

3、元素数据类型。

通常,Numpy数组中的所有元素的类型都必须相同的,而Python列表中的元素类型是任意的,所以在通用性能方面Numpy数组不及Python列表,但在科学计算中,可以省掉很多循环语句,代码使用方面比Python列表简单的多。

总结

到此这篇关于python中数组和列表的文章就介绍到这了,更多相关python数组和列表内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     813人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     354人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     318人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     435人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     224人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯