文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

Scrapy 爬虫实例 抓取豆瓣小组信息并保存到mongodb中

2024-04-02 19:55

关注

这个框架关注了很久,但是直到最近空了才仔细的看了下 这里我用的是scrapy0.24版本

先来个成品好感受这个框架带来的便捷性,等这段时间慢慢整理下思绪再把最近学到的关于此框架的知识一一更新到博客来。


最近想学git 于是把代码放到 git-osc上了:

https://git.oschina.net/1992mrwang/doubangroupspider


先说明下这个玩具爬虫的目的

能够将种子URL页面当中的小组进行爬取 并分析出有关联的小组连接 以及小组的组员人数 和组名等信息

出来的数据大概是这样的

{    'RelativeGroups': [u'http://www.douban.com/group/10127/',
                        u'http://www.douban.com/group/seventy/',
                        u'http://www.douban.com/group/lovemuseum/',
                        u'http://www.douban.com/group/486087/',
                        u'http://www.douban.com/group/lovesh/',
                        u'http://www.douban.com/group/NoAstrology/',
                        u'http://www.douban.com/group/shanghaijianzhi/',
                        u'http://www.douban.com/group/12658/',
                        u'http://www.douban.com/group/shanghaizufang/',
                        u'http://www.douban.com/group/gogo/',
                        u'http://www.douban.com/group/117546/',
                        u'http://www.douban.com/group/159755/'],
     'groupName': u'\u4e0a\u6d77\u8c46\u74e3',
     'groupURL': 'http://www.douban.com/group/Shanghai/',
     'totalNumber': u'209957'}

有啥用 其实这些数据就能够分析小组与小组之间的关联度等,如果有心还能抓取到更多的信息。不在此展开 本文章主要是为了能够快速感受一把。


首先就是 start 一个新的名为douban的项目

# scrapy startproject douban

# cd douban

这是整个项目的完整后的目录 
ps 放到git-osc时候为了美观改变了项目主目录名称 clone下来无影响
mrwang@mrwang-ubuntu:~/student/py/douban$ tree
.
├── douban
│   ├── __init__.py
│   ├── items.py           # 实体
│   ├── pipelines.py     # 数据管道文件
│   ├── settings.py       # 设置
│   └── spiders
│       ├── BasicGroupSpider.py  # 真正进行爬取的爬虫
│       └──  __init__.py
├── nohup.out              # 我用nohup 进行后台运行生成的一个日志文件
├── scrapy.cfg
├── start.sh                   # 为了方便写的启动shell 很简单
├── stop.sh                   # 为了方便写的停止shell 很简单
└── test.log                   # 抓取时生成的日志 在启动脚本中就有


编写实体 items.py , 主要是为了抓回来的数据可以很方便的持久化

mrwang@mrwang-ubuntu:~/student/py/douban$ cat douban/items.py
# -*- coding: utf-8 -*-

# Define here the models for your scraped items
#
# See documentation in:
# http://doc.scrapy.org/en/latest/topics/items.html
from scrapy.item import Item, Field
 
class DoubanItem(Item):
    # define the fields for your item here like:
    # name = Field()
    groupName = Field()
    groupURL = Field()
    totalNumber = Field()
    RelativeGroups = Field()
    ActiveUesrs = Field()


编写爬虫并自定义一些规则进行数据的处理

mrwang@mrwang-ubuntu:~/student/py/douban$ cat douban/spiders/BasicGroupSpider.py
# -*- coding: utf-8 -*-

from scrapy.contrib.spiders import CrawlSpider, Rule
from scrapy.contrib.linkextractors.sgml import SgmlLinkExtractor
from scrapy.selector import HtmlXPathSelector
from scrapy.item import Item
from douban.items import DoubanItem
import re

class GroupSpider(CrawlSpider):
    # 爬虫名
    name = "Group"
    
    allowed_domains = ["douban.com"]
    # 种子链接
    start_urls = [
        "http://www.douban.com/group/explore?tag=%E8%B4%AD%E7%89%A9",
        "http://www.douban.com/group/explore?tag=%E7%94%9F%E6%B4%BB",
        "http://www.douban.com/group/explore?tag=%E7%A4%BE%E4%BC%9A",
        "http://www.douban.com/group/explore?tag=%E8%89%BA%E6%9C%AF",
        "http://www.douban.com/group/explore?tag=%E5%AD%A6%E6%9C%AF",
        "http://www.douban.com/group/explore?tag=%E6%83%85%E6%84%9F",
        "http://www.douban.com/group/explore?tag=%E9%97%B2%E8%81%8A",
        "http://www.douban.com/group/explore?tag=%E5%85%B4%E8%B6%A3"
    ]
 
     # 规则 满足后 使用callback指定的函数进行处理    
    rules = [
        Rule(SgmlLinkExtractor(allow=('/group/[^/]+/$', )),
callback='parse_group_home_page', process_request='add_cookie'),
        Rule(SgmlLinkExtractor(allow=('/group/explore\?tag', )), follow=True,
process_request='add_cookie'),
    ]
 
    def __get_id_from_group_url(self, url):
        m =  re.search("^http://www.douban.com/group/([^/]+)/$", url)
        if(m):
            return m.group(1) 
        else:
            return 0
 
    def add_cookie(self, request):
        request.replace(cookies=[
 
        ]);
        return request;
 
    def parse_group_topic_list(self, response):
        self.log("Fetch group topic list page: %s" % response.url)
        pass
 
 
    def parse_group_home_page(self, response):
 
        self.log("Fetch group home page: %s" % response.url)
         
        # 这里使用的是一个叫 XPath 的选择器
        hxs = HtmlXPathSelector(response)
        item = DoubanItem()
 
        #get group name
        item['groupName'] = hxs.select('//h2/text()').re("^\s+(.*)\s+$")[0]
 
        #get group id 
        item['groupURL'] = response.url
        groupid = self.__get_id_from_group_url(response.url)
 
        #get group members number
        members_url = "http://www.douban.com/group/%s/members" % groupid
        members_text = hxs.select('//a[contains(@href, "%s")]/text()' % members_url).re("\((\d+)\)")
        item['totalNumber'] = members_text[0]

        #get relative groups
        item['RelativeGroups'] = []
        groups = hxs.select('//div[contains(@class, "group-list-item")]')
        for group in groups:
            url = group.select('div[contains(@class, "title")]/a/@href').extract()[0]
            item['RelativeGroups'].append(url)        

        return item


编写数据处理的管道这个阶段我会把爬虫收集到的数据存储到mongodb当中去

mrwang@mrwang-ubuntu:~/student/py/douban$ cat douban/pipelines.py
# -*- coding: utf-8 -*-

# Define your item pipelines here
#
# Don't forget to add your pipeline to the ITEM_PIPELINES setting
# See: http://doc.scrapy.org/en/latest/topics/item-pipeline.html
import pymongo

from scrapy import log
from scrapy.conf import settings
from scrapy.exceptions import DropItem

class DoubanPipeline(object):
    def __init__(self):
        self.server = settings['MONGODB_SERVER']
        self.port = settings['MONGODB_PORT']
        self.db = settings['MONGODB_DB']
        self.col = settings['MONGODB_COLLECTION']
        connection = pymongo.Connection(self.server, self.port)
        db = connection[self.db]
        self.collection = db[self.col]

    def process_item(self, item, spider):
        self.collection.insert(dict(item))
        log.msg('Item written to MongoDB database %s/%s' % (self.db, self.col),level=log.DEBUG, spider=spider)
        return item


在设置类中设置 所使用的数据处理管道 以及mongodb连接参数 和 user-agent 躲避爬虫被禁

mrwang@mrwang-ubuntu:~/student/py/douban$ cat douban/settings.py
# -*- coding: utf-8 -*-

# Scrapy settings for douban project
#
# For simplicity, this file contains only the most important settings by
# default. All the other settings are documented here:
#
#     http://doc.scrapy.org/en/latest/topics/settings.html
#

BOT_NAME = 'douban'

SPIDER_MODULES = ['douban.spiders']
NEWSPIDER_MODULE = 'douban.spiders'

# 设置等待时间缓解服务器压力 并能够隐藏自己
DOWNLOAD_DELAY = 2

RANDOMIZE_DOWNLOAD_DELAY = True
USER_AGENT = 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_8_3) AppleWebKit/536.5 (KHTML, like Gecko) Chrome/19.0.1084.54 Safari/536.5'
COOKIES_ENABLED = True

# 配置使用的数据管道
ITEM_PIPELINES = ['douban.pipelines.DoubanPipeline']

MONGODB_SERVER='localhost'
MONGODB_PORT=27017
MONGODB_DB='douban'
MONGODB_COLLECTION='doubanGroup'

# Crawl responsibly by identifying yourself (and your website) on the user-agent
#USER_AGENT = 'douban (+http://www.yourdomain.com)'


OK 一个玩具爬虫就简单的完成了

启动启动命令

nohup scrapy crawl Group --logfile=test.log &


===========================  2014/12/02 更新 ===================================

在github上发现已经有人 和我想的一样 重新写了一个调度器 使用mongodb进行存储需要接下来访问的页面,于是照着模仿了一遍写一个来用

mrwang@mrwang-ThinkPad-Edge-E431:~/student/py/douban$ cat douban/scheduler.py

from scrapy.utils.reqser import request_to_dict, request_from_dict
import pymongo
import datetime

class Scheduler(object):
    def __init__(self, mongodb_server, mongodb_port, mongodb_db, persist, queue_key, queue_order):
        self.mongodb_server = mongodb_server
        self.mongodb_port = mongodb_port
        self.mongodb_db = mongodb_db
        self.queue_key = queue_key
    self.persist = persist
    self.queue_order = queue_order

    def __len__(self):
        return self.client.size()

    @classmethod
    def from_crawler(cls, crawler):
    settings = crawler.settings
    mongodb_server = settings.get('MONGODB_QUEUE_SERVER', 'localhost')
    mongodb_port = settings.get('MONGODB_QUEUE_PORT', 27017)
    mongodb_db = settings.get('MONGODB_QUEUE_DB', 'scrapy')
        persist = settings.get('MONGODB_QUEUE_PERSIST', True)
        queue_key = settings.get('MONGODB_QUEUE_NAME', None)
        queue_type = settings.get('MONGODB_QUEUE_TYPE', 'FIFO')

    if queue_type not in ('FIFO', 'LIFO'):
        raise Error('MONGODB_QUEUE_TYPE must be FIFO (default) or LIFO')

    if queue_type == 'LIFO':
        queue_order = -1
    else:
        queue_order = 1

        return cls(mongodb_server, mongodb_port, mongodb_db, persist, queue_key, queue_order)

    def open(self, spider):
        self.spider = spider
    if self.queue_key is None:
        self.queue_key = "%s_queue"%spider.name

    connection = pymongo.Connection(self.mongodb_server, self.mongodb_port)
    self.db = connection[self.mongodb_db]
    self.collection = self.db[self.queue_key]

        # notice if there are requests already in the queue
    size = self.collection.count()
        if size > 0:
            spider.log("Resuming crawl (%d requests scheduled)" % size)

    def close(self, reason):
        if not self.persist:
            self.collection.drop()

    def enqueue_request(self, request):
    data = request_to_dict(request, self.spider)
    
    self.collection.insert({
        'data': data,
        'created': datetime.datetime.utcnow()
    })

    def next_request(self):
    entry = self.collection.find_and_modify(sort={"$natural":self.queue_order}, remove=True)
    if entry:
        request = request_from_dict(entry['data'], self.spider)
        return request
    
        return None

    def has_pending_requests(self):
        return self.collection.count() > 0

这个默认都有配置,如果希望自定义也可以在douban/settings.py 中配置

具体的可以配置的东西有

参数名                                 默认值
MONGODB_QUEUE_SERVER=localhost  服务器
MONGODB_QUEUE_PORT=27017   端口号
MONGODB_QUEUE_DB=scrapy  数据库名
MONGODB_QUEUE_PERSIST=True  完成后是否将任务队列从mongo中删除
MONGODB_QUEUE_NAME=None 队列集合名 如果为None 默认为你爬虫的名字
MONGODB_QUEUE_TYPE=FIFO  先进先出 或者 LIFO后进先出

任务队列分离后可以方便后期将爬虫改造成为分布式突破单机限制,git-osc 已更新。

会有人考虑任务队列的效率问题,我在个人电脑上测试队列达到将近百万级对mongodb做一次比较复杂的查询,再未做任何索引的情况下出来的效果还是不错的。8G内存+I5 内存未用尽,还打开了大量程序的情况下进行,如果有人在看,也可以自行做一次测试 不算太糟糕。

Scrapy  爬虫实例 抓取豆瓣小组信息并保存到mongodb中



阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     807人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     351人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     314人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     433人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     221人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-数据库
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯