文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

python数据分析之单因素分析线性拟合及地理编码

2024-04-02 19:55

关注

一、单因素分析线性拟合

实现代码:

import pandas as pd
from pylab import mpl
from scipy import optimize
import numpy as np
import matplotlib.pyplot as plt
def f_1(x, A, B):
    return A*x + B
def draw_cure(file):
    data1=pd.read_excel(file)
    data1=pd.DataFrame(data1)
    hz=list(data1['患者密度(人/10万人)'])
    rk=list(data1['人口密度(人/平方千米)'])
    hz_gy=[]
    rk_gy=[]
    for i in hz:
        hz_gy.append((i-min(hz))/(max(hz)-min(hz)))
    for i in rk:
        rk_gy.append((i-min(rk))/(max(rk)-min(rk)))
    n=['玄武区','秦淮区','建邺区','鼓楼区','浦口区','栖霞区','雨花台区','江宁区','六合区','溧水区','高淳区',
       '锡山区','惠山区','滨湖区','梁溪区','新吴区','江阴市','宜兴市',
       '鼓楼区','云龙区','贾汪区','泉山区','铜山区','丰县','沛县','睢宁县','新沂市','邳州市',
       '天宁区','钟楼区','新北区','武进区','金坛区','溧阳市',
       '虎丘区','吴中区','相城区','姑苏区','吴江区','常熟市','张家港市','昆山市','太仓市',
       '崇川区','港闸区','通州区','如东县','启东市','如皋市','海门市','海安市',
       '连云区','海州区','赣榆区','东海县','灌云县','灌南县',
       '淮安区','淮阴区','清江浦区','洪泽区','涟水县','盱眙县','金湖县',
       '亭湖区','盐都区','大丰区','响水县','滨海县','阜宁县','射阳县','建湖县','东台市',
       '广陵区','邗江区','江都区','宝应县','仪征市','高邮市',
       '京口区','润州区','丹徒区','丹阳市','扬中市','句容市',
       '海陵区','高港区','姜堰区','兴化市','靖江市','泰兴市',
       '宿城区','宿豫区','沭阳县','泗阳县','泗洪县']
    mpl.rcParams['font.sans-serif'] = ['FangSong']
    plt.figure(figsize=(16,8),dpi=98)
    p1 = plt.subplot(121)
    p2 = plt.subplot(122)
    p1.scatter(rk_gy,hz_gy,c='r')
    p2.scatter(rk_gy,hz_gy,c='r')
    p1.axis([0.0,1.01,0.0,1.01])
    p1.set_ylabel("患者密度(人/10万人)",fontsize=13)
    p1.set_xlabel("人口密度(人/平方千米)",fontsize=13)
    p1.set_title("人口密度—患者密度相关性",fontsize=13)
    for i,txt in enumerate(n):
        p1.annotate(txt,(rk_gy[i],hz_gy[i]))
    A1, B1 = optimize.curve_fit(f_1, rk_gy, hz_gy)[0]
    x1 = np.arange(0, 1, 0.01)
    y1 = A1*x1 + B1
    p1.plot(x1, y1, "blue",label='一次拟合直线')
    x2 = np.arange(0, 1, 0.01)
    y2 = x2
    p1.plot(x2, y2,'g--',label='y=x')
    p1.legend(loc='upper left',fontsize=13)
    # # plot the box
    tx0 = 0;tx1 = 0.1;ty0 = 0;ty1 = 0.2
    sx = [tx0,tx1,tx1,tx0,tx0]
    sy = [ty0,ty0,ty1,ty1,ty0]
    p1.plot(sx,sy,"purple")
    p2.axis([0,0.1,0,0.2])
    p2.set_ylabel("患者密度(人/10万人)",fontsize=13)
    p2.set_xlabel("人口密度(人/平方千米)",fontsize=13)
    p2.set_title("人口密度—患者密度相关性",fontsize=13)
    for i,txt in enumerate(n):
        p2.annotate(txt,(rk_gy[i],hz_gy[i]))
    p2.plot(x1, y1, "blue",label='一次拟合直线')
    p2.plot(x2, y2,'g--',label='y=x')
    p2.legend(loc='upper left',fontsize=13)
    plt.show()
if __name__ == '__main__':
    draw_cure("F:\医学大数据课题\论文终稿修改\scientific report\返修\市区县相关分析 _2231.xls")

实现效果:

二、实现地理编码

实现代码:

import json
from urllib.request import urlopen,quote
import xlrd
def readXLS(XLS_FILE,sheet0):
    rb= xlrd.open_workbook(XLS_FILE)
    rs= rb.sheets()[sheet0]
    return rs
def getlnglat(adress):
    url = 'http://api.map.baidu.com/geocoding/v3/?address='
    output = 'json'
    ak = 'fdi11GHN3GYVQdzVnUPuLSScYBVxYDFK'
    add = quote(adress)#使用quote进行编码 为了防止中文乱码
    # add=adress
    url2 = url + add + '&output=' + output + '&ak=' + ak
    req = urlopen(url2)
    res = req.read().decode()
    temp = json.loads(res)
    return temp
def getlatlon(sd_rs):
    nrows_sd_rs=sd_rs.nrows
    for i in range(4,nrows_sd_rs):
    # for i in range(4, 7):
        row=sd_rs.row_values(i)
        print(i,i/nrows_sd_rs)
        b = (row[11]+row[12]+row[9]).replace('#','号') # 第三列的地址
        print(b)
        try:
            lng = getlnglat(b)['result']['location']['lng']  # 获取经度并写入
            lat = getlnglat(b)['result']['location']['lat']  #获取纬度并写入
        except KeyError as e:
            lng=''
            lat=''
            f_err=open('f_err.txt','a')
            f_err.write(str(i)+'\t')
            f_err.close()
            print(e)
        print(lng,lat)
        f_latlon = open('f_latlon.txt', 'a')
        f_latlon.write(row[0]+'\t'+b+'\t'+str(lng)+'\t'+str(lat)+'\n')
        f_latlon.close()
if __name__=='__main__':
    # sle_xls_file = 'F:\医学大数据课题\江苏省SLE数据库(两次随访合并).xlsx'
    sle_xls_file = "F:\医学大数据课题\数据副本\江苏省SLE数据库(两次随访合并) - 副本.xlsx"
    sle_data_rs = readXLS(sle_xls_file, 1)
    getlatlon(sle_data_rs)

结果展示:

到此这篇关于python数据分析之单因素分析线性拟合及地理编码的文章就介绍到这了,更多相关python数据分析内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     813人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     354人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     318人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     435人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     224人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯