文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

利用 PyTorch Lightning 搭建一个文本分类模型,你学会了吗?

2024-11-29 18:30

关注

图片

代码库包含四个核心的 Python 脚本:

下面详细解析每个部分,以便理解它们是如何协同作用,以实现文本分类的高效工作流程。

1. 数据加载与预处理

在 data.py 文件中,DataModule 类被设计用来处理数据加载和预处理的所有环节。它利用了 PyTorch Lightning 的 LightningDataModule,这有助于保持数据处理任务的模块化和可复用性。

class DataModule(pl.LightningDataModule):
    def __init__(self, model_name="google/bert_uncased_L-2_H-128_A-2", batch_size=32):
        super().__init__()
        self.batch_size = batch_size
        self.tokenizer = AutoTokenizer.from_pretrained(model_name)

这个类在初始化时需要指定模型名称和批量大小,并从 Hugging Face 的 Transformers 库加载一个分词器。prepare_data() 函数会从 GLUE 基准测试套件中下载 CoLA 数据集,这个数据集经常用来评估自然语言理解(NLU)模型的性能。

setup() 函数负责对文本数据进行分词处理,并创建用于训练和验证的 PyTorch DataLoader 对象:

def setup(self, stage=None):
    if stage == "fit" or stage is None:
        self.train_data = self.train_data.map(self.tokenize_data, batched=True)
        self.train_data.set_format(type="torch", columns=["input_ids", "attention_mask", "label"])
        self.val_data = self.val_data.map(self.tokenize_data, batched=True)
        self.val_data.set_format(type="torch", columns=["input_ids", "attention_mask", "label"])

2. 模型架构

在 model.py 文件中定义的 ColaModel 类继承自 PyTorch Lightning 的 LightningModule。该模型采用 BERT(一种双向编码器表示,源自 Transformers)的简化版本作为文本表示的核心模型。

class ColaModel(pl.LightningModule):
    def __init__(self, model_name="google/bert_uncased_L-2_H-128_A-2", lr=1e-2):
        super(ColaModel, self).__init__()
        self.bert = AutoModel.from_pretrained(model_name)
        self.W = nn.Linear(self.bert.config.hidden_size, 2)

模型在前向传播过程中提取 BERT 的最终隐藏状态,并通过一个线性层来生成用于二分类的对数几率(logits):

def forward(self, input_ids, attention_mask):
    outputs = self.bert(input_ids=input_ids, attention_mask=attention_mask)
    h_cls = outputs.last_hidden_state[:, 0]
    logits = self.W(h_cls)
    return logits

另外,training_step() 和 validation_step() 函数分别负责处理训练和验证的逻辑,并记录诸如损失和准确率等关键指标。

3. Training Loop

train.py 脚本利用 PyTorch Lightning 的 Trainer 类来控制训练过程。它还包含了模型检查点和提前停止的回调机制,以防止模型过拟合。

checkpoint_callback = ModelCheckpoint(dirpath="./models", mnotallow="val_loss", mode="min")
early_stopping_callback = EarlyStopping(mnotallow="val_loss", patience=3, verbose=True, mode="min")

训练过程设定了最大周期数,并在可能的情况下利用 GPU 进行加速:

trainer = pl.Trainer(
    default_root_dir="logs",
    gpus=(1 if torch.cuda.is_available() else 0),
    max_epochs=5,
    fast_dev_run=False,
    logger=pl.loggers.TensorBoardLogger("logs/", name="cola", versinotallow=1),
    callbacks=[checkpoint_callback, early_stopping_callback],
)
trainer.fit(cola_model, cola_data)

这样的配置不仅让训练变得更加简便,还保证了模型能够定期保存并对其性能进行监控。

4. 推理

训练结束后,将利用模型来进行预测。inference.py 脚本中定义了一个名为 ColaPredictor 的类,该类负责加载经过训练的模型检查点,并提供了一个用于生成预测的方法:

class ColaPredictor:
    def __init__(self, model_path):
        self.model_path = model_path
        self.model = ColaModel.load_from_checkpoint(model_path)
        self.model.eval()
        self.model.freeze()

Predict() 方法接受文本输入,使用分词器对其进行处理,并返回模型的预测:

def predict(self, text):
    inference_sample = {"sentence": text}
    processed = self.processor.tokenize_data(inference_sample)
    logits = self.model(
        torch.tensor([processed["input_ids"]]),
        torch.tensor([processed["attention_mask"]]),
    )
    scores = self.softmax(logits[0]).tolist()
    predictions = [{"label": label, "score": score} for score, label in zip(scores, self.labels)]
    return predictions

总结

本项目展示了如何采用 PyTorch Lightning 进行构建、训练和部署文本分类模型的系统化方法。尽情地尝试代码,调整参数,并试用不同的数据集或模型吧。

来源:数据科学工厂内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     813人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     354人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     318人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     435人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     224人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯