文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

【环境搭建:onnx模型部署】onnxruntime-gpu安装与测试(python)

2023-09-02 06:11

关注

ONNX模型部署环境创建

onnx 模型在 CPU 上进行推理,在conda环境中直接使用pip安装即可

pip install onnxruntime

想要 onnx 模型在 GPU 上加速推理,需要安装 onnxruntime-gpu 。有两种思路:

要注意:onnxruntime-gpu, cuda, cudnn三者的版本要对应,否则会报错 或 不能使用GPU推理。
onnxruntime-gpu, cuda, cudnn版本对应关系详见: 官网

2.1 方法一:onnxruntime-gpu依赖于本地主机上cuda和cudnn

2.2 方法二:onnxruntime-gpu不依赖于本地主机上cuda和cudnn

在 conda 环境中安装,不依赖于 本地主机 上已安装的 cuda 和 cudnn 版本,灵活方便。这里,先说一下已经测试通过的组合:

如果需要其他的版本, 可以根据 onnxruntime-gpu, cuda, cudnn 三者对应关系自行组合测试。

下面,从创建conda环境,到实现在GPU上加速onnx模型推理进行举例。

2.2.1 举例:创建onnxruntime-gpu==1.14.1的conda环境

## 创建conda环境conda create -n torch python=3.8## 激活conda环境source activate torchconda install pytorch==1.10.0 torchvision==0.11.0 torchaudio==0.10.0 cudatoolkit=11.3 -c pytorch -c conda-forgeconda install cudnn==8.2.1pip install onnxruntime-gpu==1.14.1## pip install ... (根据需求,安装其他的包)

2.2.2 举例:实例测试

来源地址:https://blog.csdn.net/qq_40541102/article/details/130086491

阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     813人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     354人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     318人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     435人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     224人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯