文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

Java中锁的分类与使用方法

2024-04-02 19:55

关注

Lock和synchronized

为啥需要Lock

  1. syn效率低:锁的释放情况少,试图获得锁时不能设定超时,不能中断一个正在试图获得锁的线程
  2. 不够灵活,加锁和释放的时机单一,每个锁仅有一个单一的条件(某个对象),可能是不够的
  3. 无法知道是否成功获取到锁

主要方法

Lock();     

最普通的获取锁,最佳实践是finally中释放锁,保证发生异常的时候锁一定被释放


    
    private static Lock lock = new ReentrantLock();
 
    public static void main(String[] args) {
        lock.lock();
        try {
            //获取本锁保护的资源
            System.out.println(Thread.currentThread().getName() + "开始执行任务");
        } finally {
            lock.unlock();
        }
    }

tryLock(long time,TimeUnit unit);超时就放弃

用来获取锁,如果当前锁没有被其它线程占用,则获取成功,则返回true,否则返回false,代表获取锁失败



    static class TryLockDeadlock implements Runnable {
 
        int flag = 1;
 
        static Lock lock1 = new ReentrantLock();
        static Lock lock2 = new ReentrantLock();
 
        @Override
        public void run() {
            for (int i = 0; i < 100; i++) {
                if (flag == 1) {
                    try {
                        if (lock1.tryLock(800, TimeUnit.MILLISECONDS)) {
                            try {
                                System.out.println("线程1获取到了锁1");
                                Thread.sleep(new Random().nextInt(1000));
                                if (lock2.tryLock(800,TimeUnit.MILLISECONDS)){
                                    try {
                                        System.out.println("线程1获取到了锁2");
                                        System.out.println("线程1成功获取到了2把锁");
                                        break;
                                    }finally {
                                        lock2.unlock();
                                    }
                                }else{
                                    System.out.println("线程1获取锁2失败,已重试");
                                }
                            } finally {
                                lock1.unlock();
                                Thread.sleep(new Random().nextInt(1000));
                            }
                        } else {
                            System.out.println("线程1获取锁1失败,已重试");
                        }
                    } catch (InterruptedException e) {
                        e.printStackTrace();
                    }
                }
 
                if (flag == 0) {
                    try {
                        if (lock2.tryLock(3000, TimeUnit.MILLISECONDS)) {
                            try {
                                System.out.println("线程2获取到了锁2");
                                Thread.sleep(new Random().nextInt(1000));
                                if (lock1.tryLock(800,TimeUnit.MILLISECONDS)){
                                    try {
                                        System.out.println("线程2获取到了锁1");
                                        System.out.println("线程2成功获取到了2把锁");
                                        break;
                                    }finally {
                                        lock1.unlock();
                                    }
                                }else{
                                    System.out.println("线程2获取锁1失败,已重试");
                                }
                            } finally {
                                lock2.unlock();
                                Thread.sleep(new Random().nextInt(1000));
                            }
                        } else {
                            System.out.println("线程2获取锁2失败,已经重试");
                        }
                    } catch (InterruptedException e) {
                        e.printStackTrace();
                    }
                }
            }
        }
 
        public static void main(String[] args) {
            TryLockDeadlock r1 = new TryLockDeadlock();
            TryLockDeadlock r2 = new TryLockDeadlock();
            r1.flag = 1;
            r2.flag = 0;
            new Thread(r1).start();
            new Thread(r2).start();
        }
    }
 
执行结果:
线程1获取到了锁1
线程2获取到了锁2
线程1获取锁2失败,已重试
线程2获取到了锁1
线程2成功获取到了2把锁
线程1获取到了锁1
线程1获取到了锁2
线程1成功获取到了2把锁

lockInterruptibly(); 中断

相当于tryLock(long time,TimeUnit unit) 把超时时间设置为无限,在等待锁的过程中,线程可以被中断



    static class LockInterruptibly implements Runnable {
 
        private Lock lock = new ReentrantLock();
 
        @Override
        public void run() {
            System.out.println(Thread.currentThread().getName() + "尝试获取锁");
            try {
                lock.lockInterruptibly();
                try {
                    System.out.println(Thread.currentThread().getName() + "获取到了锁");
                    Thread.sleep(5000);
                } catch (InterruptedException e) {
                    System.out.println(Thread.currentThread().getName() + "睡眠中被中断了");
                } finally {
                    lock.unlock();
                    System.out.println(Thread.currentThread().getName() + "释放了锁");
                }
            } catch (InterruptedException e) {
                System.out.println(Thread.currentThread().getName() + "等锁期间被中断了");
            }
        }
 
        public static void main(String[] args) {
            LockInterruptibly lockInterruptibly = new LockInterruptibly();
            Thread thread0 = new Thread(lockInterruptibly);
            Thread thread1 = new Thread(lockInterruptibly);
            thread0.start();
            thread1.start();
            try {
                Thread.sleep(2000);
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
            thread0.interrupt();
        }
    }
 
执行结果:
Thread-0尝试获取锁
Thread-1尝试获取锁
Thread-0获取到了锁
Thread-0睡眠中被中断了
Thread-0释放了锁
Thread-1获取到了锁
Thread-1释放了锁

Java锁分类:

乐观锁和悲观锁:

乐观锁:

比较乐观,认为自己在处理操作的时候,不会有其它线程来干扰,所以并不会锁住操作对象

劣势:

可能造成ABA问题,就是不知道是不是修改过

使用场景:

适合并发写入少的情况,大部分是读取的场景,不加锁的能让读取的性能大幅提高

悲观锁:

比较悲观,认为如果我不锁住这个资源,别人就会来争抢,就会造成数据结果错误,所以它会锁住操作对象,Java中悲观锁的实现就是syn和Lock相关类

劣势:

使用场景:

适合并发写入多的情况,适用于临界区持锁时间比较长的情况:

  1. 临界区有IO操作
  2. 临界区代码复杂或者循环量大
  3. 临界区竞争非常激烈

可重入锁:

可重入就是说某个线程已经获得某个锁,可以再次获取锁而不会出现死锁

ReentrantLock 和 synchronized 都是可重入锁


// 递归调用演示可重入锁
    static class RecursionDemo{
 
        public static ReentrantLock lock = new ReentrantLock();
 
        private static void accessResource(){
            lock.lock();
            try {
                System.out.println("已经对资源处理了");
                if (lock.getHoldCount() < 5){
                    System.out.println("已经处理了"+lock.getHoldCount()+"次");
                    accessResource();
                }
            }finally {
                lock.unlock();
            }
        }
 
        public static void main(String[] args) {
            new RecursionDemo().accessResource();
        }
    }
 
 
执行结果:
已经对资源处理了
已经处理了1次
已经对资源处理了
已经处理了2次
已经对资源处理了
已经处理了3次
已经对资源处理了
已经处理了4次
已经对资源处理了

ReentrantLock的其它方法

公平锁和非公平锁



class FairLock{
 
    public static void main(String[] args) {
        PrintQueue printQueue = new PrintQueue();
        Thread[] thread = new Thread[10];
        for (int i = 0; i < 10; i++) {
            thread[i] = new Thread(new Job(printQueue));
        }
 
        for (int i = 0; i < 5; i++) {
            thread[i].start();
            try {
                Thread.sleep(100);
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
        }
    }
 
}
 
class Job implements Runnable{
 
    PrintQueue printQueue;
 
    public Job(PrintQueue printQueue) {
        this.printQueue = printQueue;
    }
 
    @Override
    public void run() {
        System.out.println(Thread.currentThread().getName()+"开始打印");
        printQueue.printJob(new Object());
        System.out.println(Thread.currentThread().getName()+"打印完成");
    }
}
 
class PrintQueue{    
    // true 公平,false是非公平
    private  Lock queueLock = new ReentrantLock(true);
    public void printJob(Object document){
        queueLock.lock();
        try {
            int duration = new Random().nextInt(10)+1;
            System.out.println(Thread.currentThread().getName()+"正在打印,需要"+duration+"秒");
            Thread.sleep(duration * 1000);
        } catch (InterruptedException e) {
            e.printStackTrace();
        } finally {
            queueLock.unlock();
        }
 
        queueLock.lock();
        try {
            int duration = new Random().nextInt(10)+1;
            System.out.println(Thread.currentThread().getName()+"正在打印,需要"+duration+"秒");
            Thread.sleep(duration * 1000);
        } catch (InterruptedException e) {
            e.printStackTrace();
        } finally {
            queueLock.unlock();
        }
 
    }
}
 
执行结果:
Thread-0开始打印
Thread-0正在打印,需要10秒
Thread-1开始打印
Thread-2开始打印
Thread-3开始打印
Thread-4开始打印
Thread-1正在打印,需要2秒
Thread-2正在打印,需要2秒
Thread-3正在打印,需要2秒
Thread-4正在打印,需要4秒
Thread-0正在打印,需要2秒
Thread-0打印完成
Thread-1正在打印,需要7秒
Thread-1打印完成
Thread-2正在打印,需要8秒
Thread-2打印完成
Thread-3正在打印,需要3秒
Thread-3打印完成
Thread-4正在打印,需要8秒
Thread-4打印完成
 
true改为false演示非公平锁:
Lock queueLock = new ReentrantLock(false);
执行结果:
Thread-0正在打印,需要7秒
Thread-1开始打印
Thread-2开始打印
Thread-3开始打印
Thread-4开始打印
Thread-0正在打印,需要9秒
Thread-0打印完成
Thread-1正在打印,需要3秒
Thread-1正在打印,需要2秒
Thread-1打印完成
Thread-2正在打印,需要4秒
Thread-2正在打印,需要7秒
Thread-2打印完成
Thread-3正在打印,需要10秒
Thread-3正在打印,需要2秒
Thread-3打印完成
Thread-4正在打印,需要7秒
Thread-4正在打印,需要8秒
Thread-4打印完成

共享锁和排它锁:

读写锁的作用:

读写锁的规则:

  1. 多个线程值申请读锁,都可以申请到
  2. 要么一个或多个一起读,要么一个写,两者不会同时申请到,只能存在一个写锁


class CinemaReadWrite{
    private static ReentrantReadWriteLock reentrantReadWriteLock = new ReentrantReadWriteLock();
    private static ReentrantReadWriteLock.ReadLock readLock = reentrantReadWriteLock.readLock();
    private static ReentrantReadWriteLock.WriteLock writeLock = reentrantReadWriteLock.writeLock();
 
    private static void read(){
        readLock.lock();
        try {
            System.out.println(Thread.currentThread().getName() + "得到了读锁,正在读取");
            Thread.sleep(1000);
        } catch (InterruptedException e) {
            e.printStackTrace();
        } finally {
            System.out.println(Thread.currentThread().getName() + "释放了读锁");
            readLock.unlock();
        }
    }
 
    private static void write(){
        writeLock.lock();
        try {
            System.out.println(Thread.currentThread().getName() + "得到了写锁,正在写入");
            Thread.sleep(1000);
        } catch (InterruptedException e) {
            e.printStackTrace();
        } finally {
            System.out.println(Thread.currentThread().getName() + "释放了写锁");
            writeLock.unlock();
        }
    }
 
    public static void main(String[] args) {
        new Thread(()-> read(),"Thrad1").start();
        new Thread(()-> read(),"Thrad2").start();
        new Thread(()-> write(),"Thrad3").start();
        new Thread(()-> write(),"Thrad4").start();
    }
}
 
执行结果:
Thrad1得到了读锁,正在读取
Thrad2得到了读锁,正在读取
Thrad2释放了读锁
Thrad1释放了读锁
Thrad3得到了写锁,正在写入
Thrad3释放了写锁
Thrad4得到了写锁,正在写入
Thrad4释放了写锁

读锁和写锁的交互方式:

读锁插队策略:

自旋锁和阻塞锁

自旋缺点:

原理:



class SpinLock{
    private AtomicReference<Thread> sign = new AtomicReference<>();
 
    public void lock(){
        Thread currentThread = Thread.currentThread();
        while (!sign.compareAndSet(null,currentThread)){
            System.out.println("自旋获取失败,再次尝试");
        }
    }
 
    public void unLock(){
        Thread currentThread = Thread.currentThread();
        sign.compareAndSet(currentThread,null);
    }
 
    public static void main(String[] args) {
        SpinLock spinLock = new SpinLock();
        Runnable runnable = new Runnable(){
            @Override
            public void run(){
                System.out.println(Thread.currentThread().getName()+"开始尝试自旋锁");
                spinLock.lock();
                System.out.println(Thread.currentThread().getName()+"获取到了自旋锁");
                try {
                    Thread.sleep(1);
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }finally {
                    spinLock.unLock();
                    System.out.println(Thread.currentThread().getName()+"释放了自旋锁");
                }
            }
        };
 
        Thread thread1 = new Thread(runnable);
        Thread thread2 = new Thread(runnable);
        thread1.start();
        thread2.start();
    }
}
 
 
执行结果:
Thread-0开始尝试自旋锁
Thread-0获取到了自旋锁
Thread-1开始尝试自旋锁
自旋获取失败,再次尝试
自旋获取失败,再次尝试
自旋获取失败,再次尝试
自旋获取失败,再次尝试
自旋获取失败,再次尝试
自旋获取失败,再次尝试
自旋获取失败,再次尝试
自旋获取失败,再次尝试
自旋获取失败,再次尝试
自旋获取失败,再次尝试
自旋获取失败,再次尝试
Thread-0释放了自旋锁
Thread-1获取到了自旋锁
Thread-1释放了自旋锁

使用场景:

总结

到此这篇关于Java中锁的分类与使用方法的文章就介绍到这了,更多相关Java中锁使用内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     813人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     354人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     318人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     435人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     224人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯