文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

Python实现从概率分布中随机采样

2024-04-02 19:55

关注

在上一篇博文《Python中的随机采样和概率分布(一)》中,我们介绍了Python中最简单的随机采样函数。接下来我们更进一步,来看看如何从一个概率分布中采样,我们以几个机器学习中最常用的概率分布为例。

1. 二项(binomial)/伯努利(Bernoulli)分布

1.1 概率质量函数(pmf)

当n=1时,则取到下列极限情况,是为参数为p的二项分布:

二项分布P(X=x; n, p)可以表示进行独立重复试验n次,每次有两成功和失败可能结果(分别对应概率p和1−p),共成功x次的概率。

1.2 函数原型


random.binomial(n, p, size=None)

参数:

n: int or array_like of ints   对应分布函数中的参数 n,>=0,浮点数会被截断为整形。

p: float or array_like of floats   对应分布函数参数p, >=0并且<=1。

size: int or tuple of ints, optional   如果给定形状为(m,n,k),那么m×n×k个随机样本会从中抽取。默认为None,即返回一个一个标量随机样本。

返回:

out: ndarray or scalar  从带参数的概率分布中采的随机样本,每个样本表示独立重复实验n次中成功的次数。

1.3 使用样例

设进行独立重复实验10次,每次成功概率为0.5,采样样本表示总共的成功次数(相当于扔10次硬币,正面朝上的次数)。总共采20个样本。


import numpy as np
n, p = 10, .5  
s = np.random.binomial(n, p, 20)
print(s) # [4 5 6 5 4 2 4 6 7 2 4 4 2 4 4 7 6 3 5 6]

可以粗略的看到,样本几乎都在5周围上下波动。

我们来看一个有趣的例子。一家公司钻了9口井,每口井成功的概率为0.1,所有井都失败了,发生这种情况的概率是多少?

我们总共采样2000次,来看下产生0结果的概率。


s = sum(np.random.binomial(9, 0.1, 20000) == 0)/20000.
print(s) # 0.3823

可见,所有井失败的概率为0.3823,这个概率还是蛮大的。

2. 多项(multinomial)分布

2.1 概率质量函数(pmf)

当k=2时,则取到下列极限情况,是为参数为n, p的二项分布:

也就是说,多项分布式二项分布的推广:仍然是独立重复实验n次,但每次不只有成功和失败两种结果,而是k种可能的结果,每种结果的概率为pi。多项分布是一个随机向量的分布,x=(x1,x2,...,xk)意为第i种结果出现xi次,P(X=x; n, p)也就表示第i种结果出现xi次的概率。

2.2 函数原型


random.multinomial(n, pvals, size=None)

参数:

n: int   对应分布函数中的参数 n

pvals: sequence of floats   对应分布函数参数p, 其长度等于可能的结果数k,并且有0⩽pi⩽1。

size: int or tuple of ints, optional   为输出形状大小,因为采出的每个样本是一个随机向量,默认最后一维会自动加上k,如果给定形状为(m,n),那么m×n个维度为k的随机向量会从中抽取。默认为None,即返回一个一个k维的随机向量。

返回:

out: ndarray   从带参数的概率分布中采的随机向量,长度为可能的结果数k,如果没有给定 size,则shape为 (k,)

2.3 使用样例

设进行独立重复实验20次,每次情况的概率为1/6,采样出的随机向量表示每种情况出现次数(相当于扔20次六面骰子,点数为0, 1, 2, ..., 5出现的次数)。总共采1个样本。


s = np.random.multinomial(20, [1/6.]*6, size=1)
print(s) # [[4 2 2 3 5 4]]

当然,如果不指定size,它直接就会返回一个一维向量了


s = np.random.multinomial(20, [1/6.]*6)
print(s) # [4 1 4 3 5 3]

如果像进行多次采样,改变 size即可:


s = np.random.multinomial(20, [1/6.]*6, size=(2, 2))
print(s)
# [[[4 3 4 2 6 1]
#   [5 2 1 6 3 3]]

#  [[5 4 1 1 6 3]
#   [2 5 2 5 4 2]]]

这个函数在论文<sup>[1]</sup>的实现代码<sup>[2]</sup>中用来设置每一个 client分得的样本数:


for cluster_id in range(n_clusters): 
    weights = np.random.dirichlet(alpha=alpha * np.ones(n_clients))
    clients_counts[cluster_id] = np.random.multinomial(clusters_sizes[cluster_id], weights)
    # 一共扔clusters_sizes[cluster_id]次筛子,该函数返回骰子落在某个client上各多少次,也就对应着该client应该分得的样本数

3.均匀(uniform)分布

3.1 概率密度函数(pdf)

均匀分布可用于随机地从连续区间[a,b)内进行采样。

3.2 函数原型


random.uniform(low=0.0, high=1.0, size=None)

参数:

low: float or array_like of floats, optional   对应分布函数中的下界参数 a,默认为0。

high: float or array_like of floats   对应分布函数中的下界参数 b,默认为1.0。

size: int or tuple of ints, optional   为输出形状大小,如果给定形状为(m,n,k),那么m×n×k的样本会从中抽取。默认为None,即返回一个单一标量。

返回:

out: ndarray or scalar   从带参数的均匀分布中采的随机样本

3.3 使用样例


s = np.random.uniform(-1,0,10)
print(s)
# [-0.9479594  -0.86158902 -0.63754099 -0.0883407  -0.92845644 -0.11148294
#  -0.19826197 -0.77396765 -0.26809953 -0.74734785]

4. 狄利克雷(Dirichlet)分布

4.1 概率密度函数(pdf)

4.2 函数原型


random.dirichlet(alpha, size=None)

参数:

alpha: sequence of floats, length k   对应分布函数中的参数向量 α,长度为k。

size: int or tuple of ints, optional   为输出形状大小,因为采出的每个样本是一个随机向量,默认最后一维会自动加上k,如果给定形状为(m,n),那么m×n个维度为k的随机向量会从中抽取。默认为None,即返回一个一个k维的随机向量。

返回:

out: ndarray   采出的样本,大小为(size,k)。

4.3 使用样例

设α=(10,5,3)(意味着k=3),size=(2,2),则采出的样本为2×2个维度为k=3的随机向量。


s = np.random.dirichlet((10, 5, 3), size=(2, 2))
print(s)
# [[[0.82327647 0.09820451 0.07851902]
#   [0.50861077 0.4503409  0.04104833]]

#  [[0.31843167 0.22436547 0.45720285]
#   [0.40981943 0.40349597 0.1866846 ]]]

这个函数在论文[1]的实现代码[2]中用来生成符合狄利克雷分布的权重向量


for cluster_id in range(n_clusters): 
    # 为每个client生成一个权重向量,文章中分布参数alpha每一维都相同
    weights = np.random.dirichlet(alpha=alpha * np.ones(n_clients))
    clients_counts[cluster_id] = np.random.multinomial(clusters_sizes[cluster_id], weights)

参考文献

[1] Marfoq O, Neglia G, Bellet A, et al. Federated multi-task learning under a mixture of distributions[J]. Advances in Neural Information Processing Systems, 2021, 34.

[2] https://github.com/omarfoq/FedEM

[3] https://www.python.org/

[4] https://numpy.org/

到此这篇关于Python实现从概率分布中随机采样的文章就介绍到这了,更多相关Python 概率分布 随机采样内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     813人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     354人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     318人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     435人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     224人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯