文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

Python怎么实现希尔伯特变换

2023-07-05 23:16

关注

这篇文章主要介绍“Python怎么实现希尔伯特变换”,在日常操作中,相信很多人在Python怎么实现希尔伯特变换问题上存在疑惑,小编查阅了各式资料,整理出简单好用的操作方法,希望对大家解答”Python怎么实现希尔伯特变换”的疑惑有所帮助!接下来,请跟着小编一起来学习吧!

一、希尔伯特变换是什么

希尔伯特变换最初只对周期函数(也就是圆上的函数)有定义,在这种情况下它就是与希尔伯特核的卷积。然而更常见的情况下,对于定义在实直线R(上半平面的边界)上的函数,希尔伯特变换是指与柯西核卷积。希尔伯特变换与帕利-维纳定理有着密切的联系,帕利-维纳定理是将上半平面内的全纯函数与实直线上的函数的傅里叶变换相联系起来的另一种结果。

二、VC中的实现原理及代码示例

VC中可以通过快速傅里叶变换(FFT)来实现希尔伯特变换。

以下是一个简单的C++代码实现希尔伯特变换,需要使用C++11及以上版本的标准库。首先我们需要实现一个FFT函数,然后使用FFT函数来实现希尔伯特变换。

#include <iostream>#include <cmath>#include <complex>#include <vector>using namespace std;typedef complex<double> Complex;typedef vector<Complex> ComplexVector;// 快速傅里叶变换void fft(ComplexVector& data) {    int n = data.size();    if (n <= 1) {        return;    }    // 分离偶数项和奇数项    ComplexVector even(n/2), odd(n/2);    for (int i = 0; i < n; i += 2) {        even[i/2] = data[i];        odd[i/2] = data[i+1];    }    // 递归计算偶数项和奇数项的FFT    fft(even);    fft(odd);    // 计算每个k点的DFT    for (int k = 0; k < n/2; k++) {        Complex t = polar(1.0, -2 * M_PI * k / n) * odd[k];        data[k] = even[k] + t;        data[k+n/2] = even[k] - t;    }}// 希尔伯特变换void hilbertTransform(ComplexVector& signal) {    int n = signal.size();    // 扩展信号长度至2的幂次方    int n2 = 1;    while (n2 < n) {        n2 *= 2;    }    signal.resize(n2);    // 进行FFT变换    fft(signal);    // 对FFT结果进行处理    for (int i = 1; i < n; i++) {        signal[i] *= 2;    }    for (int i = n; i < n2; i++) {        signal[i] = 0;    }    signal[0] = 1;    signal[n] = 0;    // 反向FFT变换    fft(signal);    for (int i = 0; i < n; i++) {        signal[i] = signal[i].imag() / n;    }}int main() {    ComplexVector signal = {1, 2, 3, 4, 5, 6, 7, 8};    hilbertTransform(signal);    // 输出结果    for (int i = 0; i < signal.size(); i++) {        cout << signal[i] << " ";    }    cout << endl;    return 0;}

上述代码中,我们首先实现了一个快速傅里叶变换函数fft,然后在hilbertTransform函数中使用FFT计算希尔伯特变换。在希尔伯特变换的计算过程中,我们首先对信号进行了长度的扩展,然后进行了FFT变换,接着根据希尔伯特变换的公式进行了FFT结果的处理,最后进行反向FFT变换得到最终的希尔伯特变换结果。

在上述代码中,我们使用了复数类型complex和向量类型vector来方便地处理信号和FFT结果。在实际应用中,我们可以将输入信号读取自文件或者从实时采集的数据中获取,然后调用hilbertTransform函数进行希尔伯特变换,得到变换后的信号。

三、用Python代码实现

使用Python也可以方便地实现希尔伯特变换。下面是一个使用numpy库实现希尔伯特变换的示例代码:

import numpy as npdef hilbert_transform(signal):    """    计算希尔伯特变换    """    n = len(signal)    # 扩展信号长度至2的幂次方    n2 = 1    while n2 < n:        n2 *= 2    signal = np.append(signal, np.zeros(n2 - n))    # 进行FFT变换    spectrum = np.fft.fft(signal)    # 对FFT结果进行处理    spectrum[1:n] *= 2    spectrum[n:] = 0    spectrum[0] = 1    spectrum[n] = 0    # 反向FFT变换    hilbert = np.real(np.fft.ifft(spectrum))    hilbert = hilbert[:n]    return hilbertif __name__ == "__main__":    signal = [1, 2, 3, 4, 5, 6, 7, 8]    hilbert = hilbert_transform(signal)    # 输出结果    print(hilbert)

上述代码中,我们首先将输入信号扩展至2的幂次方长度,然后使用numpy.fft.fft函数进行FFT变换,对FFT结果进行处理,最后使用numpy.fft.ifft函数进行反向FFT变换得到希尔伯特变换结果。

需要注意的是,由于numpy.fft.fft函数返回的结果是按照FFT变换的频率从小到大排列的,而希尔伯特变换则是在时域上进行的,因此我们需要对FFT结果进行一定的处理才能得到正确的希尔伯特变换结果。在上述代码中,我们对FFT结果进行了一系列处理,包括将非零频率部分的幅度乘以2,将非零频率部分之外的频率置零,以及将直流分量和Nyquist频率分量的值分别设为1和0,从而得到正确的希尔伯特变换结果。

到此,关于“Python怎么实现希尔伯特变换”的学习就结束了,希望能够解决大家的疑惑。理论与实践的搭配能更好的帮助大家学习,快去试试吧!若想继续学习更多相关知识,请继续关注编程网网站,小编会继续努力为大家带来更多实用的文章!

阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     813人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     354人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     318人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     435人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     224人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯