文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

Python numpy中np.random.seed()的详细用法实例

2024-04-02 19:55

关注

引言

在进行机器学习和深度学习中,我们会经常用到np.random.seed(),利用随机数种子,使得每次生成的随机数相同。

numpy.randn.randn(d0,d1,...,dn)

import numpy as np

a = np.random.randn(2,4)  #4*2矩阵
print(a)

b = np.random.randn(4,3,2)  #shape:4*3*2
print(b)

我们将带着两个问题进行np.random.seed()的学习:

  1.np.random.seed()是否一直有效?

  2.np.random.seed(Argument)的参数作用?

E.G.实验

# -*- coding: utf-8 -*- 
# @Time : 2019/10/26 20:57 
# @Author : BaoBao
# @Mail : baobaotql@163.com 
# @File : random.seed.py 
# @Software: PyCharm

import numpy as np

if __name__ == '__main__':
    i = 0
    while (i < 6):
        if (i < 3):
            np.random.seed(0)
            print(np.random.randn(1, 5))
        else:
            print(np.random.randn(1, 5))
            pass
        i += 1

    print("-------------------")
    i = 0
    while (i < 2):
        print(np.random.randn(1, 5))
        i += 1
    print(np.random.randn(2, 5))

    print("---------reset----------")
    np.random.seed(0)
    i = 0
    while (i < 8):
        print(np.random.randn(1, 5))
        i += 1

运行截图:

可以看出,np.random.seed()对后面的随机数一直有效。

两次利用random.seed()后,即使跳出循环以后,生成随机数的结果依然相同。第一次跳出while循环后,进入第二次while循环,

得到的两个随机数组确实和加了随机数种子不一样。但是后面的加入随机数种子的,八次循环中的结果和前面的结果是一样的。说明,

随机数种子对后面的结果一直有影响。同时,加入随机数种子以后,后面的数组都是按一定的顺序生成的。

E.G.随机数种子参数的作用

# -*- coding: utf-8 -*- 
# @Time : 2019/10/26 20:57 
# @Author : BaoBao
# @Mail : baobaotql@163.com 
# @File : random.seed.py 
# @Software: PyCharm
import numpy as np

if __name__ == '__main__':
    i = 0
    np.random.seed(0)
    while (i < 3):
        print(np.random.randn(1, 5))
        i += 1
    i = 0
    print("---------------------")
    np.random.seed(1)
    i = 0
    while (i < 3):
        print(np.random.randn(1, 5))
        i += 1

运行截图:

当随机数种子参数为0和1时,生成的随机数结果相同。说明该参数指定了一个随机数生成的起始位置。每个参数对应一个位置。

并且在该参数确定后,其后面的随机数的生成顺序也就确定了。所以,随机数种子的参数怎么选择?这个参数只是确定一下随机数的起始位置,可随意分配.

补充:一个随机种子在代码中只作用一次,只作用于其定义位置的下一次随机数生成 

import numpy as np
num=0
print(np.random.random())#没有设置随机种子 那么这里是根据系统时间为参数生成的随机数
np.random.seed(5)
while(num<5):
    print(np.random.random())
    num+=1

 

总结

到此这篇关于Python numpy中np.random.seed()详细用法的文章就介绍到这了,更多相关numpy.random.seed()的用法内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     813人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     354人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     318人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     435人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     224人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯