文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

Python可视化函数plt.scatter详解

2023-05-15 08:07

关注

一、说明

       关于matplotlib的scatter函数有许多活动参数,如果不专门注解,是无法掌握精髓的,本文专门针对scatter的参数和调用说起,并配有若干案例。

二、函数和参数详解

2.1 scatter函数原型

matplotlib.pyplot.scatter(x, y, s=None, c=None, marker=None, cmap=None, norm=None, vmin=None, vmax=None, alpha=None, linewidths=None, *, edgecolors=None, plotnonfinite=False, data=None, **kwargs)

2.2 参数详解

属性参数意义
坐标x,y输入点列的数组,长度都是size
点大小s点的直径数组,默认直径20,长度最大size
点颜色c点的颜色,默认蓝色 'b',也可以是个 RGB 或 RGBA 二维行数组。
点形状marker点的样式,默认小圆圈 'o'。
调色板cmap

Colormap,默认 None,标量或者是一个 colormap 的名字,只有 c 是一个浮点数数组时才使用。如果没有申明就是 image.cmap。

亮度(1)normNormalize,默认 None,数据亮度在 0-1 之间,只有 c 是一个浮点数的数组的时才使用。
亮度(2)vmin,vmax亮度设置,在 norm 参数存在时会忽略。
透明度alpha透明度设置,0-1 之间,默认 None,即不透明
线linewidths标记点的长度
颜色

edgecolors

颜色或颜色序列,默认为 'face',可选值有 'face', 'none', None。

plotnonfinite

布尔值,设置是否使用非限定的 c ( inf, -inf 或 nan) 绘制点。

**kwargs

其他参数。

2.3 其中散点的形状参数marker如下:

2.4 其中颜色参数c如下:

三、画图示例

3.1 关于坐标x,y和s,c

import numpy as np
import matplotlib.pyplot as plt
 
# Fixing random state for reproducibility
np.random.seed(19680801)
 
N = 50
x = np.random.rand(N)
y = np.random.rand(N)
colors = np.random.rand(N)          # 颜色可以随机
area = (30 * np.random.rand(N))**2  # 点的宽度30,半径15
 
plt.scatter(x, y, s=area, c=colors, alpha=0.5)  
plt.show()

        注意:以上核心语句是:

plt.scatter(x, y, s=area, c=colors, alpha=0.5, marker=",")

        其中:x,y,s,c维度一样就能成。

3.2 多元高斯的情况

import numpy as np
import matplotlib.pyplot as plt
fig=plt.figure(figsize=(8,6))
#Generating a Gaussion dataset:
#creating random vectors from the multivariate normal distribution
#given mean and covariance
mu_vec1=np.array([0,0])
cov_mat1=np.array([[1,0],[0,1]])
X=np.random.multivariate_normal(mu_vec1,cov_mat1,500)
R=X**2
R_sum=R.sum(axis=1)
plt.scatter(X[:,0],X[:,1],color='green',marker='o', =32.*R_sum,edgecolor='black',alpha=0.5)
 
plt.show()

3.3  绘制例子

from matplotlib import pyplot as plt
import numpy as np
# Generating a Gaussion dTset:
#Creating random vectors from the multivaritate normal distribution
#givem mean and covariance
 
mu_vecl = np.array([0, 0])
cov_matl = np.array([[2,0],[0,2]])
 
x1_samples = np.random.multivariate_normal(mu_vecl, cov_matl,100)
x2_samples = np.random.multivariate_normal(mu_vecl+0.2, cov_matl +0.2, 100)
x3_samples = np.random.multivariate_normal(mu_vecl+0.4, cov_matl +0.4, 100)
 
plt.figure(figsize = (8, 6))
 
plt.scatter(x1_samples[:,0], x1_samples[:, 1], marker='x',
           color = 'blue', alpha=0.7, label = 'x1 samples')
plt.scatter(x2_samples[:,0], x1_samples[:,1], marker='o',
           color ='green', alpha=0.7, label = 'x2 samples')
plt.scatter(x3_samples[:,0], x1_samples[:,1], marker='^',
           color ='red', alpha=0.7, label = 'x3 samples')
plt.title('Basic scatter plot')
plt.ylabel('variable X')
plt.xlabel('Variable Y')
plt.legend(loc = 'upper right')
 
plt.show()
 
 
    import matplotlib.pyplot as plt
    
    fig,ax = plt.subplots()
    
    ax.plot([0],[0], marker="o",  markersize=10)
    ax.plot([0.07,0.93],[0,0],    linewidth=10)
    ax.scatter([1],[0],           s=100)
    
    ax.plot([0],[1], marker="o",  markersize=22)
    ax.plot([0.14,0.86],[1,1],    linewidth=22)
    ax.scatter([1],[1],           s=22**2)
    
    plt.show()
![image.png](http://upload-images.jianshu.io/upload_images/8730384-8d27a5015b37ee97.png?imageMogr2/auto-orient/strip%7CimageView2/2/w/1240)
 
    import matplotlib.pyplot as plt
    
    for dpi in [72,100,144]:
    
        fig,ax = plt.subplots(figsize=(1.5,2), dpi=dpi)
        ax.set_title("fig.dpi={}".format(dpi))
    
        ax.set_ylim(-3,3)
        ax.set_xlim(-2,2)
    
        ax.scatter([0],[1], s=10**2, 
                   marker="s", linewidth=0, label="100 points^2")
        ax.scatter([1],[1], s=(10*72./fig.dpi)**2, 
                   marker="s", linewidth=0, label="100 pixels^2")
    
        ax.legend(loc=8,framealpha=1, fontsize=8)
    
        fig.savefig("fig{}.png".format(dpi), bbox_inches="tight")
    
    plt.show() 

3.4 绘图例3

import matplotlib.pyplot as plt
 
for dpi in [72,100,144]:
 
    fig,ax = plt.subplots(figsize=(1.5,2), dpi=dpi)
    ax.set_title("fig.dpi={}".format(dpi))
 
    ax.set_ylim(-3,3)
    ax.set_xlim(-2,2)
 
    ax.scatter([0],[1], s=10**2, 
               marker="s", linewidth=0, label="100 points^2")
    ax.scatter([1],[1], s=(10*72./fig.dpi)**2, 
               marker="s", linewidth=0, label="100 pixels^2")
 
    ax.legend(loc=8,framealpha=1, fontsize=8)
 
    fig.savefig("fig{}.png".format(dpi), bbox_inches="tight")
 
plt.show() 

3.5  同心绘制

plt.scatter(2, 1, s=4000, c='r')
plt.scatter(2, 1, s=1000 ,c='b')
plt.scatter(2, 1, s=10, c='g')

3.6 有标签绘制

import matplotlib.pyplot as plt
 
x_coords = [0.13, 0.22, 0.39, 0.59, 0.68, 0.74,0.93]
y_coords = [0.75, 0.34, 0.44, 0.52, 0.80, 0.25,0.55]
 
fig = plt.figure(figsize = (8,5))
 
plt.scatter(x_coords, y_coords, marker = 's', s = 50)
for x, y in zip(x_coords, y_coords):
    plt.annotate('(%s,%s)'%(x,y), xy=(x,y),xytext = (0, -10), textcoords = 'offset points',ha = 'center', va = 'top')
plt.xlim([0,1])
plt.ylim([0,1])
plt.show()

3.7 直线划分

# 2-category classfication with random 2D-sample data
# from a multivariate normal distribution
 
import numpy as np
from matplotlib import pyplot as plt
 
def decision_boundary(x_1):
    """Calculates the x_2 value for plotting the decision boundary."""
#    return 4 - np.sqrt(-x_1**2 + 4*x_1 + 6 + np.log(16))
    return -x_1 + 1
 
# Generating a gaussion dataset:
# creating random vectors from the multivariate normal distribution
# given mean and covariance
 
mu_vec1 = np.array([0,0])
cov_mat1 = np.array([[2,0],[0,2]])
x1_samples = np.random.multivariate_normal(mu_vec1, cov_mat1,100)
mu_vec1 = mu_vec1.reshape(1,2).T # TO 1-COL VECTOR
 
mu_vec2 = np.array([1,2])
cov_mat2 = np.array([[1,0],[0,1]])
x2_samples = np.random.multivariate_normal(mu_vec2, cov_mat2, 100)
mu_vec2 = mu_vec2.reshape(1,2).T # to 2-col vector
 
# Main scatter plot and plot annotation
 
f, ax = plt.subplots(figsize = (7, 7))
ax.scatter(x1_samples[:, 0], x1_samples[:,1], marker = 'o',color = 'green', s=40)
ax.scatter(x2_samples[:, 0], x2_samples[:,1], marker = '^',color = 'blue', s =40)
plt.legend(['Class1 (w1)', 'Class2 (w2)'], loc = 'upper right')
plt.title('Densities of 2 classes with 25 bivariate random patterns each')
plt.ylabel('x2')
plt.xlabel('x1')
ftext = 'p(x|w1) -N(mu1=(0,0)^t, cov1 = I)\np.(x|w2) -N(mu2 = (1, 1)^t), cov2 =I'
plt.figtext(.15,.8, ftext, fontsize = 11, ha ='left')
 
#Adding decision boundary to plot
 
x_1 = np.arange(-5, 5, 0.1)
bound = decision_boundary(x_1)
plt.plot(x_1, bound, 'r--', lw = 3)
 
x_vec = np.linspace(*ax.get_xlim())
x_1 = np.arange(0, 100, 0.05)
 
plt.show()

3.8 曲线划分

# 2-category classfication with random 2D-sample data
# from a multivariate normal distribution
 
import numpy as np
from matplotlib import pyplot as plt
 
def decision_boundary(x_1):
    """Calculates the x_2 value for plotting the decision boundary."""
    return 4 - np.sqrt(-x_1**2 + 4*x_1 + 6 + np.log(16))
 
# Generating a gaussion dataset:
# creating random vectors from the multivariate normal distribution
# given mean and covariance
 
mu_vec1 = np.array([0,0])
cov_mat1 = np.array([[2,0],[0,2]])
x1_samples = np.random.multivariate_normal(mu_vec1, cov_mat1,100)
mu_vec1 = mu_vec1.reshape(1,2).T # TO 1-COL VECTOR
 
mu_vec2 = np.array([1,2])
cov_mat2 = np.array([[1,0],[0,1]])
x2_samples = np.random.multivariate_normal(mu_vec2, cov_mat2, 100)
mu_vec2 = mu_vec2.reshape(1,2).T # to 2-col vector
 
# Main scatter plot and plot annotation
 
f, ax = plt.subplots(figsize = (7, 7))
ax.scatter(x1_samples[:, 0], x1_samples[:,1], marker = 'o',color = 'green', s=40)
ax.scatter(x2_samples[:, 0], x2_samples[:,1], marker = '^',color = 'blue', s =40)
plt.legend(['Class1 (w1)', 'Class2 (w2)'], loc = 'upper right')
plt.title('Densities of 2 classes with 25 bivariate random patterns each')
plt.ylabel('x2')
plt.xlabel('x1')
ftext = 'p(x|w1) -N(mu1=(0,0)^t, cov1 = I)\np.(x|w2) -N(mu2 = (1, 1)^t), cov2 =I'
plt.figtext(.15,.8, ftext, fontsize = 11, ha ='left')
 
#Adding decision boundary to plot
 
x_1 = np.arange(-5, 5, 0.1)
bound = decision_boundary(x_1)
plt.plot(x_1, bound, 'r--', lw = 3)
 
x_vec = np.linspace(*ax.get_xlim())
x_1 = np.arange(0, 100, 0.05)
 
plt.show()

到此这篇关于Python可视化函数plt.scatter详解的文章就介绍到这了,更多相关Python plt.scatter内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     813人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     354人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     318人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     435人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     224人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯