注:本篇文章以新冠疫情数据文件的合并为例。
需要相关数据的请移步:》2020-2022年新冠疫情数据
一、单目录下面的数据合并
将2020下的所有文件进行合并,成一个文件:
import requests
import json
import openpyxl
import datetime
import datetime as dt
import time
import pandas as pd
import csv
from openpyxl import load_workbook
from sqlalchemy import create_engine
import math
import os
import glob
csv_list=glob.glob(r'D:\Python\03DataAcquisition\COVID-19\2020\*.csv')
print("所有数据文件总共有%s" %len(csv_list))
for i in csv_list:
fr=open(i,"rb").read() #除了第一个数据文件外,其他不读取表头
with open('../output/covid19temp0314.csv','ab') as f:
f.write(fr)
f.close()
print('数据合成完毕!')
合并后的数据:
二、使用函数进行数据合并
## 02 使用函数进行数据合并
import os
import pandas as pd
# 定义函数(具有递归功能)
def mergeFile(parent,path="",pathdeep=0,filelist=[],csvdatadf=pd.DataFrame(),csvdata=pd.DataFrame()):
fileAbsPath=os.path.join(parent,path)
if os.path.isdir(fileAbsPath)==True:
if(pathdeep!=0 and ('.ipynb_checkpoints' not in str(fileAbsPath))): # =0代表没有下一层目录
print('--'+path)
for filename2 in os.listdir(fileAbsPath):
mergeFile(fileAbsPath,filename2,pathdeep=pathdeep+1)
else:
if(pathdeep==2 and path.endswith(".csv") and os.path.getsize(parent+'/'+path)>0):
filelist.append(parent+'/'+path)
return filelist
# D:\Python\03DataAcquisition\COVID-19
path=input("请输入数据文件所在目录:")
filelist=mergeFile(path)
filelist
csvdata=pd.DataFrame()
csvdatadf=pd.DataFrame()
for m in filelist:
csvdata=pd.read_csv(m,encoding='utf-8-sig')
csvdatadf=csvdatadf.append(csvdata)
# 由于2023年的数据还没有,所以不合并
(* ̄(oo) ̄)注: 这个的等待时间应该会比较长,因为一共有一百九十多万条数据。
将合并后的数据进行保存:
csvdatadf.to_csv("covid190314.csv",index=None,encoding='utf-8-sig')
csvdatadf=pd.read_csv("covid190314.csv",encoding='utf-8-sig')
csvdatadf.info()
读取新冠疫情在2020/0101之前的数据:
beforedf=pd.read_csv(r'D:\Python\03DataAcquisition\COVID-19\before20201111.csv',encoding='utf-8-sig')
beforedf.info()
将两组数据合并:
tempalldf=beforedf.append(csvdatadf)
tempalldf.head()
三、处理港澳台数据
如图所示:要将Country_Region从Hong Kong变成China。澳门和台湾也是如此:
查找有关台湾的数据:
beforedf.loc[beforedf['Country/Region']=='Taiwan']
beforedf.loc[beforedf['Country/Region'].str.contains('Taiwan')]
beforedf.loc[beforedf['Country/Region'].str.contains('Taiwan'),'Province/State']='Taiwan'
beforedf.loc[beforedf['Province/State']=='Taiwan','Country/Region']='China'
beforedf.loc[beforedf['Province/State']=='Taiwan']
香港的数据处理:
beforedf.loc[beforedf['Country/Region'].str.contains('Hong Kong'),'Province/State']='Hong Kong'
beforedf.loc[beforedf['Province/State']=='Hong Kong','Country/Region']='China'
afterdf.loc[afterdf['Country_Region'].str.contains('Hong Kong'),'Province_State']='Hong Kong'
afterdf.loc[afterdf['Province_State']=='Hong Kong','Country_Region']='China'
澳门的数据处理:
beforedf.loc[beforedf['Country/Region'].str.contains('Macau'),'Province/State']='Macau'
beforedf.loc[beforedf['Province/State']=='Macau','Country/Region']='China'
afterdf.loc[afterdf['Country_Region'].str.contains('Macau'),'Province_State']='Macau'
afterdf.loc[afterdf['Province_State']=='Macau','Country_Region']='China'
最终将整理好的数据进行保存:
beforedf.to_csv("beforedf0314.csv",index=None,encoding='utf-8-sig')
afterdf.to_csv("afterdf0314.csv",index=None,encoding='utf-8-sig')
到此这篇关于Python实现Excel文件的合并(以新冠疫情数据为例)的文章就介绍到这了,更多相关Python合并Excel内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!