文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

python使用期物处理并发的方法

2023-07-02 09:22

关注

这篇文章主要介绍“python使用期物处理并发的方法”,在日常操作中,相信很多人在python使用期物处理并发的方法问题上存在疑惑,小编查阅了各式资料,整理出简单好用的操作方法,希望对大家解答”python使用期物处理并发的方法”的疑惑有所帮助!接下来,请跟着小编一起来学习吧!

1. futures.ThreadPoolExecutor

import osimport timeimport sysimport requestsPOP20_CC = ('CN IN US ID BR PK NG BD RU JP ' 'MX PH VN ET EG DE IR TR CD FR').split()BASE_URL = 'http://flupy.org/data/flags'DEST_DIR = './'def save_flag(img, filename):  # 保存图像    path = os.path.join(DEST_DIR, filename)    with open(path, 'wb') as fp:        fp.write(img)def get_flag(cc):  # 获取图像    url = '{}/{cc}/{cc}.gif'.format(BASE_URL, cc=cc.lower())    resp = requests.get(url)    return resp.contentdef show(text):  # 打印信息    print(text, end=' ')    sys.stdout.flush()def download_many(cc_list):    for cc in sorted(cc_list):        image = get_flag(cc)  # 获取        show(cc)  # 打印        save_flag(image, cc.lower() + '.gif')  # 保存    return len(cc_list)def main(download_many):    t0 = time.time()    count = download_many(POP20_CC)    elapsed = time.time() - t0    msg = '\n{} flags downloaded in {:.2f}s'    print(msg.format(count, elapsed))  # 计时信息# ----使用 futures.ThreadPoolExecutor 类实现多线程下载from concurrent import futuresMAX_WORKERS = 20  # 最多使用几个线程def download_one(cc):    image = get_flag(cc)    show(cc)    save_flag(image, cc.lower() + '.gif')    return ccdef download_many_1(cc_list):    workers = min(MAX_WORKERS, len(cc_list))    with futures.ThreadPoolExecutor(workers) as executor:        #  使用工作的线程数实例化 ThreadPoolExecutor 类;        #  executor.__exit__ 方法会调用 executor.shutdown(wait=True) 方法,        #  它会在所有线程都执行完毕 前阻塞线程        res = executor.map(download_one, sorted(cc_list))        # download_one 函数 会在多个线程中并发调用;        # map 方法返回一个生成器,因此可以迭代, 获取各个函数返回的值    return len(list(res))if __name__ == '__main__':    # main(download_many) # 24 秒    main(download_many_1)  # 3 秒

2. 期物

通常不应自己创建期物

只能由并发框架(concurrent.futures 或 asyncio)实例化 原因:期物 表示终将发生的事情,其 执行的时间 已经排定。因此,只有排定把某件事交给 concurrent.futures.Executor 子类处理时,才会创建 concurrent.futures.Future 实例

例如,Executor.submit() 方法的参数是一个可调用的对象,调用这个方法后会为传入的可调用对象 排期,并返回一个期物

def download_many_2(cc_list):    cc_list = cc_list[:5]    with futures.ThreadPoolExecutor(max_workers=3) as executor:        to_do = []        for cc in sorted(cc_list):            future = executor.submit(download_one, cc)            # executor.submit 方法排定可调用对象的执行时间,            # 然后返回一个 期物,表示这个待执行的操作            to_do.append(future) # 存储各个期物            msg = 'Scheduled for {}: {}'            print(msg.format(cc, future))        results = []        for future in futures.as_completed(to_do):            # as_completed 函数在期物运行结束后产出期物            res = future.result() # 获取期物的结果            msg = '{} result: {!r}'            print(msg.format(future, res))            results.append(res)    return len(results)
输出:Scheduled for BR: <Future at 0x22da99d2d30 state=running>Scheduled for CN: <Future at 0x22da99e1040 state=running>Scheduled for ID: <Future at 0x22da99e1b20 state=running>Scheduled for IN: <Future at 0x22da99ec520 state=pending>Scheduled for US: <Future at 0x22da99ecd00 state=pending>CN <Future at 0x22da99e1040 state=finished returned str> result: 'CN'BR <Future at 0x22da99d2d30 state=finished returned str> result: 'BR'ID <Future at 0x22da99e1b20 state=finished returned str> result: 'ID'IN <Future at 0x22da99ec520 state=finished returned str> result: 'IN'US <Future at 0x22da99ecd00 state=finished returned str> result: 'US'5 flags downloaded in 3.20s

3. 阻塞型I/O和GIL

CPython 解释器本身就不是线程安全的,因此有全局解释器锁(GIL), 一次只允许使用一个线程执行 Python 字节码。因此,一个 Python 进程 通常不能同时使用多个 CPU 核心

标准库中所有执行阻塞型 I/O 操作的函数,在等待操作系统返回结果时 都会释放 GIL。 这意味着在 Python 语言这个层次上可以使用多线程,而 I/O 密集型 Python 程序能从中受益:一个 Python 线程等待网络响应时,阻塞型 I/O 函数会释放 GIL,再运行一个线程(网络下载,文件读写都属于 IO 密集型)

4. 使用concurrent.futures模块启动进程

这个模块实现的是真正 的并行计算,因为它使用 ProcessPoolExecutor 类把工作分配给多个 Python 进程处理。 因此,如果需要做 CPU 密集型处理,使用这个模块 能绕开 GIL,利用所有可用的 CPU 核心

使用 concurrent.futures 模块能特别轻松地 把 基于线程 的方案转成 基于进程 的方案

ProcessPoolExecutor 的价值体现在 CPU 密集型 作业上

到此,关于“python使用期物处理并发的方法”的学习就结束了,希望能够解决大家的疑惑。理论与实践的搭配能更好的帮助大家学习,快去试试吧!若想继续学习更多相关知识,请继续关注编程网网站,小编会继续努力为大家带来更多实用的文章!

阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     807人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     351人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     314人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     433人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     221人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯