文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

深入理解Pytorch中的torch.matmul()

2023-05-15 17:33

关注

torch.matmul()

语法

torch.matmul(input, other, *, out=None) → Tensor

作用

两个张量的矩阵乘积

行为取决于张量的维度,如下所示:

请注意,广播逻辑在确定输入是否可广播时仅查看批处理维度,而不是矩阵维度

例如

该运算符支持 TensorFloat32。

在某些 ROCm 设备上,当使用 float16 输入时,此模块将使用不同的向后精度

举例

情形1: 一维 * 一维

如果两个张量都是一维的,则返回点积(标量)

tensor1 = torch.Tensor([1,2,3])
tensor2 =torch.Tensor([4,5,6])
ans = torch.matmul(tensor1, tensor2)

print('tensor1 : ', tensor1)
print('tensor2 : ', tensor2)
print('ans :', ans)
print('ans.size :', ans.size())

ans = 1 * 4 + 2 * 5 + 3 * 6 = 32

情形2: 二维 * 二维

如果两个参数都是二维的,则返回矩阵-矩阵乘积
也就是 正常的矩阵乘法 (m * n) * (n * k) = (m * k)

tensor1 = torch.Tensor([[1,2,3],[1,2,3]])
tensor2 =torch.Tensor([[4,5],[4,5],[4,5]])
ans = torch.matmul(tensor1, tensor2)

print('tensor1 : ', tensor1)
print('tensor2 : ', tensor2)
print('ans :', ans)
print('ans.size :', ans.size())

情形3: 一维 * 二维

如果第一个参数是一维的,第二个参数是二维的,为了矩阵乘法的目的,在它的维数前面加上一个 1
在矩阵相乘之后,前置维度被移除

tensor1 = torch.Tensor([1,2,3]) # 注意这里是一维
tensor2 =torch.Tensor([[4,5],[4,5],[4,5]])
ans = torch.matmul(tensor1, tensor2)

print('tensor1 : ', tensor1)
print('tensor2 : ', tensor2)
print('ans :', ans)
print('ans.size :', ans.size())

tensor1 = torch.Tensor([1,2,3]) 修改为 tensor1 = torch.Tensor([[1,2,3]])

发现一个结果是[24., 30.] 一个是[[24., 30.]]

所以,当一维 * 二维时, 开始变成 1 * m(一维的维度),也就是一个二维, 再进行正常的矩阵运算,得到[[24., 30.]], 然后再去掉开始增加的一个维度,得到[24., 30.]

想象为二维 * 二维(前置维度为1),最后结果去掉一个维度即可

情形4: 二维 * 一维

如果第一个参数是二维的,第二个参数是一维的,则返回矩阵向量积

tensor1 =torch.Tensor([[4,5,6],[7,8,9]])
tensor2 = torch.Tensor([1,2,3])
ans = torch.matmul(tensor1, tensor2)

print('tensor1 : ', tensor1)
print('tensor2 : ', tensor2)
print('ans :', ans)
print('ans.size :', ans.size())

理解为:

情形5:两个参数至少为一维且至少一个参数为 N 维(其中 N > 2),则返回批处理矩阵乘法

第一个参数为N维,第二个参数为一维时

tensor1 = torch.randn(10, 3, 4)
tensor2 = torch.randn(4)
print(torch.matmul(tensor1, tensor2).size())

(4) 先添加一个维度 (4 * 1)
得到(10 * 3 * 4) *( 4 * 1) = (10 * 3 * 1)
再删除最后一个维度(添加的那个)
得到结果(10 * 3)

tensor1 = torch.randn(10,2, 3, 4) # 
tensor2 = torch.randn(4)
print(torch.matmul(tensor1, tensor2).size())

(10 * 2 * 3 * 4) * (4 * 1) = (10 * 2 * 3) 【抵消4,删1】

第一个参数为一维,第二个参数为二维时

tensor1 = torch.randn(4)
tensor2 = torch.randn(10, 4, 3)
print(torch.matmul(tensor1, tensor2).size())

tensor2 中第一个10理解为批次, 10个(4 * 3)
(1 * 4)与每个(4 * 3) 相乘得到(1,3),去除1,得到(3)
批次为10,得到(10,3)

tensor1 = torch.randn(4)
tensor2 = torch.randn(10,2, 4, 3)
print(torch.matmul(tensor1, tensor2).size())

这里批次理解为[10, 2]即可

tensor1 = torch.randn(4)
tensor2 = torch.randn(10,4, 2,4,1)
print(torch.matmul(tensor1, tensor2).size())

个人理解:当一个参数为一维时,它要去匹配另一个参数的最后两个维度(二维 * 二维)

比如上面的例子就是(1 * 4) 匹配 (4,1), 批次为(10,4,2)

高维 * 高维时

注:这不太好理解 … 感觉就是要找准批次,再进行乘法(靠感觉了 哈哈 离谱)

参考 https://pytorch.org/docs/stable/generated/torch.matmul.html#torch.matmul 

到此这篇关于深入理解Pytorch中的torch. matmul()的文章就介绍到这了,更多相关Pytorch torch. matmul()内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     813人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     354人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     318人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     435人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     224人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯