文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

Python详细讲解图像处理的而两种库OpenCV和Pillow

2024-04-02 19:55

关注

一、简介

实现计算机视觉任务的过程中,不可避免地需要对图像进行读写操作以及图像预处理操作,下面介绍两个常用的Python图像处理库:OpenCV和Pillow。

OpenCV全称是由英特尔公司资助的开源计算机视觉库。

1.1 图像处理-OpenCV

OpenCV是模块结构的,有以下主要模块。

1.2 图像处理- PIL和Pillow

作为Python2的第三方图像处理库是Pillow的前身。随着Python3的更新,PIL移植到Python3更名为Pillow。与OpenCV一样,Pillow也是模块结构,主要包括以下结构。

二、常用图像类型

2.1 二值图像

二值图像只有黑白两种颜色,如图所示。图像中的每个像素只能是黑或白,没有中间的过渡。因此二值图像的像素值只能为0或1,0表示黑色,1表示白色。

2.2 灰度图像

2.3 RGB图像

2.4 常用颜色空间简介

实际应用中常用的颜色空间很多,通常使用3个独立的变量对颜色进行描述,例如RGB、HSV、YUV等。

一个图像的不同的颜色空间是可以转换的,cv2.cvtColor可以实现颜色的转换。

• cv2.COLOR_BGR2GRAY

• cv2.COLOR_BGR2RGB

• cv2.COLOR_BGR2HSV

• cv2.COLOR_BGR2YUV

• cv2.COLOR_BGR2HLS

三、OpenCV图像读写与显示

通过OpenCV库对数字图像进行处理时,涉及到的基础操作包括读取、显示、写出图像文件。

在OpenCV库中,图像数据是以NumPy数组的形式存在。

3.1 读入图像

在python的OpenCV中,通过cv2.imread()函数读入图像数据,其基本使用格式如下。cv2.imread(filename, flags)

在默认情况下通过cv2.imread()

函数读入图像数据为3通道的彩色图,像素值为8位的非负整数,图像数据以NumPy中ndarray的方式存在。

如果定义了cv2.imread()读入模式为cv2.IMREAD_GRAYSCALE那么读入图像为单通道的灰度图。

需要注意的是,通过OpenCV读入彩色图像数据的颜色通道顺序为BGR(蓝、绿、红)并非常用的RGB(红、绿、蓝)顺序。

在OpenCV中,读取到的图像数组维度可以表示为:

(高,宽,通道数)即(height, width, channel)。OpenCV图像坐标与常规的数学坐标有区别,左上角位置为坐标原点。

• 在Windows【画图】工具中,帽檐红点坐标为(248, 102),但在OpenCV中像素位置应为(102, 248)。

• X轴 == 列位置 == 图像宽

• Y轴 == 行位置 == 图像高

3.2 显示图像

3.3 写出图像

import cv2
import matplotlib.pyplot as plt
import numpy
# 读写图像
img = cv2.imread(filename='lena.jpg', flags=cv2.IMREAD_GRAYSCALE)
img.shape
# (377, 373)
img.dtype
# dtype('uint8')
# 图像展示
cv2.imshow(winname='lena', mat=img)
cv2.waitKey(0)
# 图像保存
cv2.imwrite(filename='test_img.jpg', img=img)

四、图像几何变换

4.1 图像平移

图像平移变换将一幅图像中的所有像素点都按照给定的偏移量在水平方向(沿x轴方向)或垂直方向(沿y轴方向)移动,是图像几何变换中较为简单的一种变换。

图像平移原理示意图如下图所示。

假设对点P_0 (x_0,y_0 )进行平移后得到点P(x,y),其中x方向的平移量为∆x,y方向的平移量为∆y ,则点P(x,y)的坐标如下式。

利用齐次坐标表示图像平移变换前后点P_0 (x_0,y_0 )到点P(x,y)的关系如下式所示。

实现步骤:

1. 定义平移变换矩阵: 例如:np.float32([[1,0,50], [0,1,100]])

• [1,0,50]表示在x轴方向移动50个单位

• [0,1,100]表示在y轴方向移动100个单位

2. 执行转换:cv2.warpAffine (src, M, dsize)

通过OpenCV实现图像平移操作,结果如下图所示,(a)为原图和(b)为平移后图像。

import cv2
import matplotlib.pyplot as plt
import numpy as np
img = cv2.imread('lena.jpg')
height, width, channel = img.shape
# 图像平移
# 1、定义平移变换矩阵
M = np.float32([[1,0,50], [0,1,100]])
# 2、执行平移变换
img_tran = cv2.warpAffine(src=img, M=M, dsize=(height, width))
cv2.imshow('image translation', img_tran)
cv2.waitKey(0)

4.2 图像旋转

图像旋转(Rotation)是指图像以某一点为中心旋转一定的角度形成一幅新的图像的过程。通常是以图像的中心为圆心旋转,将图像中的所有像素点都旋转一个相同的角度。

图像旋转原理如图所示,将点(x_0,y_0)绕原点o顺时针旋转至点(x_1,y_1 ),其中a为旋转角,r为点(x_0,y_0 )到原点的距离, b为原点o到点(x_0,y_0 )的线段与x轴之间的夹角。在旋转过程中, r保持不变。

设旋转前,x_0、y_0的坐标分别为x_0=r cos⁡b、y_0=r sin⁡b,当旋转a角度后,坐标x_1、y_1的值分别如下式所示。

上式的矩阵的形式如下式所示。

实现步骤:

1. 计算旋转变换矩阵: cv2.getRotationMatrix2D (center, angle, scale)

2. 执行转换:cv2.warpAffine (src, M, dsize)

通过OpenCV实现图像旋转,得到的效果如图所示。

# 图像旋转
# 1、定义旋转变换矩阵
M = cv2.getRotationMatrix2D(center=(height*0.5, width*0.5), # 旋转的中心位置坐标
                            angle=45,   # 旋转的角度
                            scale=0.8   # 缩放比例
                            )
# 2、执行旋转变换
img_rotation = cv2.warpAffine(img, M, dsize=(height,width))
cv2.imshow('image_rotation', img_rotation)
cv2.waitKey(0)

4.3 图像缩放

图像比例缩放是指将给定的图像在x轴方向按比例缩放f_x倍,在y轴方向按比例缩放f_y倍,从而获得一幅新的图像。如果f_x=f_y,即x轴方向和y轴方向缩放的比率相同,此比例缩放为图像的全比例缩放。如果f_x≠f_y,那么图像的比例缩放会改变原始图像的像素间的相对位置,产生几何畸变。

在OpenCV中cv2.resize(src, dsize, fx, fy, interpolation)可以实现图像缩放。

具体实现图像缩放有多种插值方法,OpenCV的resize函数提供了如下5种常见方法。

• 最邻近插值:cv2.INTER_NEAREST

• 双线性插值:cv2.INTER_LINEAR

• 区域插值:cv2.INTER_AREA

• 三次样条插值:cv2.INTER_CUBIC

• Lanczos插值:cv2.INTER_LANCZOS4

# 图像缩放
# 1、直接指定缩放大小
img_res = cv2.resize(img, dsize=(244,244))
img_res.shape
# (244, 244, 3)
cv2.imshow('image_resize', img_res)
cv2.waitKey(0)
# 2、最近邻插值
img_near = cv2.resize(img, dsize=None, fx=1.5, fy=1,
                     interpolation=cv2.INTER_NEAREST)
cv2.imshow('img_near', img_near)
cv2.waitKey(0)

到此这篇关于Python详细讲解图像处理的而两种库OpenCV和Pillow的文章就介绍到这了,更多相关Python图像处理内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     801人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     348人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     311人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     432人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     220人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯