文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

Tensorflow训练模型默认占满所有GPU的解决方案

2023-05-12 14:33

关注

Tensorflow训练模型默认占满所有GPU问题

在使用gpu服务器训练tensorflow模型时,总是占满显存!

TensorFlow默认的是占用所有GPU

因此我们需要手动设置使用的GPU编号以及单个GPU显存占用比例

1.第一步需要在代码中开头加入 

import os
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID" # 按照PCI_BUS_ID顺序从0开始排列GPU设备
os.environ["CUDA_VISIBLE_DEVICES"]=‘0'  # 使用0号gpu(想使用其他编号GPU,对应修改引号中的内容即可)
os.environ["CUDA_VISIBLE_DEVICES"]=‘0,1' # 使用0号GPU和1号GPU

2.第二步需要将代码中的sess = tf.Session()改为

gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.333) # 通过改变0.333可以改变占用显存比例
sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options))

per_process_gpu_memory_fraction=0.333代表的含义就是每个GPU进程中使用显存的上限为该GPU总量的1/3

3.如果想要在程序运行过程中连续查看GPU信息

可以在终端使用该 指令(执行指令:watch -n 3 -d nvidia-smi # 每隔三秒输出一次)(前提是设备中有合适的NVIDIA驱动)

解决tensorflow2.2把GPU显存占满

安装了tensorflow-gpu后,运行程序默认是把GPU的内存全部占满的,有时我们不想全部占满,可以这样操作。

解决代码

import tensorflow as tf 
import os
os.environ['CUDA_VISIBLE_DEVICES']="0" # 指定哪块GPU训练
config=tf.compat.v1.ConfigProto() 
# 设置最大占有GPU不超过显存的80%(可选)
# config.gpu_options.per_process_gpu_memory_fraction=0.8
config.gpu_options.allow_growth = True  # 设置动态分配GPU内存
sess=tf.compat.v1.Session(config=config)

如图:

总结

以上为个人经验,希望能给大家一个参考,也希望大家多多支持编程网。

阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     813人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     354人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     318人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     435人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     224人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯