文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

PyTorch定义Tensor及索引和切片(最新推荐)

2023-05-16 20:35

关注

深度学习--PyTorch定义Tensor

一、创建Tensor

1.1未初始化的方法

​这些方法只是开辟了空间,所附的初始值(非常大,非常小,0),后面还需要我们进行数据的存入。

torch.empty():返回一个没有初始化的Tensor,默认是FloatTensor类型。

#torch.empty(d1,d2,d3)函数输入的是shape 
torch.empty(2,3,5)
 
#tensor([[[-1.9036e-22,  6.8944e-43,  0.0000e+00,  0.0000e+00, -1.0922e-20],
#         [ 6.8944e-43, -2.8812e-24,  6.8944e-43, -5.9272e-21,  6.8944e-43],
#         [ 0.0000e+00,  0.0000e+00,  0.0000e+00,  0.0000e+00,  0.0000e+00]],
#
#        [[ 0.0000e+00,  0.0000e+00,  0.0000e+00,  0.0000e+00,  0.0000e+00],
#         [ 0.0000e+00,  0.0000e+00,  1.4013e-45,  0.0000e+00,  0.0000e+00],
#         [ 0.0000e+00,  0.0000e+00,  0.0000e+00,  0.0000e+00,  0.0000e+00]]])

torch.FloatTensor():返回没有初始化的FloatTensor。

#torch.FloatTensor(d1,d2,d3)
torch.FloatTensor(2,2)
 
#tensor([[-0.0000e+00,  4.5907e-41],
#        [-7.3327e-21,  6.8944e-43]])

torch.IntTensor():返回没有初始化的IntTensor。

#torch.IntTensor(d1,d2,d3)
torch.IntTensor(2,2)
 
#tensor([[          0,  1002524760],
#        [-1687359808,         492]], dtype=torch.int32)

1.2 随机初始化

rand:[0,1)均匀分布;randint(min,max,[d1,d2,d3]) 返回[min,max)的整数均匀分布

#torch.rand(d1,d2,d3)
torch.rand(2,2)
 
#tensor([[0.8670, 0.6158],
#        [0.0895, 0.2391]])
 
#rand_like()
a=torch.rand(3,2)
torch.rand_like(a)
 
#tensor([[0.2846, 0.3605],
#        [0.3359, 0.2789],
#        [0.5637, 0.6276]])
 
#randint(min,max,[d1,d2,d3])
torch.randint(1,10,[3,3,3])
 
#tensor([[[3, 3, 8],
#         [2, 7, 7],
#         [6, 5, 9]],
#
#        [[7, 9, 9],
#         [6, 3, 9],
#         [1, 5, 6]],
#
#        [[5, 4, 8],
#         [7, 1, 2],
#         [3, 4, 4]]])

randn返回一组符合N(0,1)正态分布的随机数据

#randn(d1,d2,d3)
torch.randn(2,2)
 
#tensor([[ 0.3729,  0.0548],
#        [-1.9443,  1.2485]])
 
#normal(mean,std) 需要给出均值和方差
torch.normal(mean=torch.full([10],0.),std=torch.arange(1,0,-0.1))
 
#tensor([-0.8547,  0.1985,  0.1879,  0.7315, -0.3785, -0.3445,  0.7092,  0.0525, 0.2669,  0.0744])
#后面需要用reshape修正成自己想要的形状

1.3 赋值初始化

full:返回一个定值

#full([d1,d2,d3],num)
torch.full([2,2],6)
 
#tensor([[6, 6],
#        [6, 6]])
 
torch.full([],6)
#tensor(6)   标量
 
torch.full([1],6)
#tensor([6]) 向量

arange:返回一组阶梯,等差数列

#torch.arange(min,max,step):返回一个[min,max),步长为step的集体数组,默认为1
torch.arange(0,10)
 
#tensor([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
 
torch.arange(0,10,2)
#tensor([0, 2, 4, 6, 8])

linspace/logspace:返回一组阶梯

#torch.linspace(min,max,steps):返回一个[min,max],数量为steps的数组
torch.linspace(1,10,11)
 
#tensor([ 1.0000,  1.9000,  2.8000,  3.7000,  4.6000,  5.5000,  6.4000,  7.3000,
#         8.2000,  9.1000, 10.0000])
 
#torch.logspace(a,b,steps):返回一个[10^a,10^b],数量为steps的数组
torch.logspace(0,1,10)
 
#tensor([ 1.0000,  1.2915,  1.6681,  2.1544,  2.7826,  3.5938,  4.6416,  5.9948,
#         7.7426, 10.0000])

ones/zeros/eye:返回全1全0或者对角阵 ones_like/zeros_like

#torch.ones(d1,d2)
torch.ones(2,2)
 
#tensor([[1., 1.],
#        [1., 1.]])
 
#torch.zeros(d1,d2)
torch.zeros(2,2)
 
#tensor([[0., 0.],
#        [0., 0.]])
 
#torch.eye() 只能接收一个或两个参数
torch.eye(3)
 
#tensor([[1., 0., 0.],
#        [0., 1., 0.],
#        [0., 0., 1.]])
 
torch.eye(2,3)
 
#tensor([[1., 0., 0.],
#        [0., 1., 0.]])

1.4 随机打散变量

randperm:一般用于位置操作。类似random.shuffle()。

torch.randperm(8)
#tensor([2, 6, 7, 5, 3, 4, 1, 0])

二、索引与切片

简单索引方式

a=torch.rand(4,3,28,28)
a[0].shape
#torch.Size([3, 28, 28])
a[0,0,0,0]
#tensor(0.9373)

批量索引方式 开始位置:结束位置 左边取的到,右边取不到 算是一种切片 [0,1,2]->[-3,-2,-1]

a[:2].shape
#torch.Size([2, 3, 28, 28])
a[1:].shape
#torch.Size([3, 3, 28, 28])

隔行采样方式 开始位置:结束位置:间隔

a[:,:,0:28:2,:].shape
#torch.Size([4, 3, 14, 28])

任意取样方式 a.index_select(d,[d层的数据索引])

a.index_select(0,torch.tensor([0,2])).shape
#torch.Size([2, 3, 28, 28])
 
a.index_select(1,torch.tensor([0,2])).shape
#torch.Size([4, 2, 28, 28])

...任意维度取样

a[...].shape
#torch.Size([4, 3, 28, 28])
 
a[0,...].shape
#torch.Size([3, 28, 28])
 
a[:,2,...].shape
#torch.Size([4, 28, 28])

掩码索引mask x.ge(0.5) 表示大于等于0.5的为1,小于0.5的为0

#torch.masked_select 取出掩码对应位置的值
x=torch.randn(3,4)
mask=x.ge(0.5)
torch.masked_select(x,mask)
 
#tensor([1.6950, 1.2207, 0.6035])

具体索引 take(变量,位置) 会把变量变为一维的

x=torch.randn(3,4)
torch.take(x,torch.tensor([0,1,5]))
 
#tensor([-2.2092, -0.2652,  0.4848])

到此这篇关于PyTorch定义Tensor以及索引和切片的文章就介绍到这了,更多相关PyTorch Tensor索引和切片内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     813人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     354人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     318人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     435人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     224人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯