文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

OpenCV 图像梯度的实现方法

2024-04-02 19:55

关注

概述

OpenCV 是一个跨平台的计算机视觉库, 支持多语言, 功能强大. 今天小白就带大家一起携手走进 OpenCV 的世界.

梯度运算

梯度: 膨胀 (Dilating) - 腐蚀 (Eroding).

例子:


# 读取图片
pie = cv2.imread("pie.png")

# 核
kernel = np.ones((7, 7), np.uint8)

# 计算梯度
gradient = cv2.morphologyEx(pie, cv2.MORPH_GRADIENT, kernel=kernel)

# 图片展示
cv2.imshow("gradient", gradient)
cv2.waitKey(0)
cv2.destroyAllWindows()

输出结果:

在这里插入图片描述

礼帽

礼帽 (Top Hat): 原始输入 - 开运算结果.

例子:


# 读取图片
img = cv2.imread("white.png")

# 核
kernel = np.ones((7, 7), np.uint8)

# 礼帽
tophat = cv2.morphologyEx(img, cv2.MORPH_TOPHAT, kernel=kernel)

# 图片展示
cv2.imshow("tophat", tophat)
cv2.waitKey(0)
cv2.destroyAllWindows()

输出结果:

在这里插入图片描述

黑帽

黑帽 (Black Hat): 闭运算 - 原始输入.

例子:


# 读取图片
img = cv2.imread("white.png")

# 核
kernel = np.ones((7, 7), np.uint8)

# 礼帽
blackhat = cv2.morphologyEx(img, cv2.MORPH_BLACKHAT, kernel=kernel)

# 图片展示
cv2.imshow("blackhat", blackhat)
cv2.waitKey(0)
cv2.destroyAllWindows()

输出结果:

在这里插入图片描述

Sobel 算子

Sobel 算子 (Sobeloperator) 是边缘检测中非常重要的一个算子. Sobel 算子是一类离散性差分算子, 用来运算图像高亮度函数的灰度之近似值.

格式:


cv2.Sobel(src, ddepth, dx, dy, ksize)

参数:

计算 x

代码:


# 读取图片
img = cv2.imread("pie.png")

# Sobel算子
sobelx = cv2.Sobel(img, -1, 1, 0, ksize=3)

# 展示图片
cv2.imshow("sobelx", sobelx)
cv2.waitKey(0)
cv2.destroyAllWindows()

输出结果:

在这里插入图片描述

计算 y

代码:


# 读取图片
img = cv2.imread("pie.png")

# Sobel算子
sobely = cv2.Sobel(img, -1, 0, 1, ksize=3)

# 展示图片
cv2.imshow("sobely", sobely)
cv2.waitKey(0)
cv2.destroyAllWindows()

输出结果:

在这里插入图片描述

计算 x+y

代码:


# 读取图片
img = cv2.imread("pie.png")

# Sobel算子
sobel = cv2.Sobel(img, -1, 1, 1, ksize=3)

# 展示图片
cv2.imshow("sobel", sobel)
cv2.waitKey(0)
cv2.destroyAllWindows()

输出结果:

在这里插入图片描述

融合

代码:


# Sobel算子
sobelx = cv2.Sobel(img, cv2.CV_64F, 1, 0, ksize=3)
sobely = cv2.Sobel(img, cv2.CV_64F, 0, 1, ksize=3)

# 转换成绝对值
sobelx = cv2.convertScaleAbs(sobelx)
sobely = cv2.convertScaleAbs(sobely)

# 融合
sobel_xy = cv2.addWeighted(sobelx, 0.5, sobely, 0.5, 0)

# 展示图片
cv2.imshow("sobel_xy", sobel_xy)
cv2.waitKey(0)
cv2.destroyAllWindows()

输出结果:

在这里插入图片描述

注: 当 ddepth 设置为 -1, 即与原图保持一致, 得到的结果可能是错误的. 计算梯度值可能出现负数, 负数会自动截断为 0. 为了避免信息丢失, 我们需要使用更高是数据类型 cv2.CV_64F, 再通过取绝对值将其映射到 cv2.CV_8U 类型.

到此这篇关于OpenCV 图像梯度的实现方法的文章就介绍到这了,更多相关OpenCV 图像梯度内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     813人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     354人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     318人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     435人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     224人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯