InputReader 的创建
从 InputManagerService: 创建与启动 可知,Input 系统的主要功能,主要集中在 native 层,并且Input 系统的 native 层又包含 InputReader, InputClassifer, InputDispatcher 三个子模块。本文来分析 InputReader 从创建到启动的基本流程,为后续分析 InputReader 的每一个功能打好基础。
从 InputManagerService: 创建与启动 可知, InputReader 的创建过程如下
// InputReaderFactory.cpp
sp<InputReaderInterface> createInputReader(const sp<InputReaderPolicyInterface>& policy,
const sp<InputListenerInterface>& listener) {
return new InputReader(std::make_unique<EventHub>(), policy, listener);
}
InputReader 依赖 EventHub,因此首先要看下 EventHub 的创建过程
EventHub::EventHub(void)
: mBuiltInKeyboardId(NO_BUILT_IN_KEYBOARD),
mNextDeviceId(1),
mControllerNumbers(),
mNeedToSendFinishedDeviceScan(false),
mNeedToReopenDevices(false),
mNeedToScanDevices(true), // mNeedToScanDevices 初始化为 true,表示需要扫描输入设备
mPendingEventCount(0),
mPendingEventIndex(0),
mPendingINotify(false) {
ensureProcessCanBlockSuspend();
// 1. 创建 epoll
mEpollFd = epoll_create1(EPOLL_CLOEXEC);
// 2. 初始化 inotify
mINotifyFd = inotify_init();
// 监听 /dev/input/ 目录项的创建与删除,其实就是监听输入设备的创建与删除
mInputWd = inotify_add_watch(mINotifyFd, DEVICE_PATH, IN_DELETE | IN_CREATE);
// ...
// 3. epoll 监听 inotify 事件
// 可读事件,表明有输入设备的创建与删除
struct epoll_event eventItem = {};
eventItem.events = EPOLLIN | EPOLLWAKEUP;
eventItem.data.fd = mINotifyFd;
int result = epoll_ctl(mEpollFd, EPOLL_CTL_ADD, mINotifyFd, &eventItem);
// 4. 创建管道
int wakeFds[2];
result = pipe(wakeFds);
mWakeReadPipeFd = wakeFds[0];
mWakeWritePipeFd = wakeFds[1];
// 设置管道两端为非阻塞
result = fcntl(mWakeReadPipeFd, F_SETFL, O_NONBLOCK);
result = fcntl(mWakeWritePipeFd, F_SETFL, O_NONBLOCK);
// 5. epoll 监听管道读端的事件
// 可读事件,表明需要唤醒 InputReader 线程,触发条件一般为配置更新
eventItem.data.fd = mWakeReadPipeFd;
result = epoll_ctl(mEpollFd, EPOLL_CTL_ADD, mWakeReadPipeFd, &eventItem);
}
EventHub 创建过程如下
- 创建 epoll 实例。
- 初始化 inotify 实例,并用 epoll 监听它的事件。当输入设备添加/删除时,epoll 就会收到 inotify 的可读事件,因此 EventHub 和 InputReader 就可以动态地处理输入设备的添加/删除。
- 创建管道。
- epoll 监听管道的读端的事件。当配置更新时,会向管道的写端写入数据,epoll 就会收到管道的可读事件,如果此时 InputReader 线程处于休眠状态,那么 InputReader 将被唤醒来处于配置更新。
epoll, inotify, pipe,它们的作用和使用方式,请读者自行查阅 Unix/Linux 资料。
现在让我们继续看下 InputReader 的创建过程
InputReader::InputReader(std::shared_ptr<EventHubInterface> eventHub,
const sp<InputReaderPolicyInterface>& policy,
const sp<InputListenerInterface>& listener)
: mContext(this), // mContext 代表 InputReader 的环境
mEventHub(eventHub),
mPolicy(policy),
mGlobalMetaState(0),
mLedMetaState(AMETA_NUM_LOCK_ON),
mGeneration(1),
mNextInputDeviceId(END_RESERVED_ID),
mDisableVirtualKeysTimeout(LLONG_MIN),
mNextTimeout(LLONG_MAX),
mConfigurationChangesToRefresh(0) {
// InputReader 会把加工后的事件添加到 QueuedInputListener 队列中,之后一起分发给 InputClassifier
mQueuedListener = new QueuedInputListener(listener);
{ // acquire lock
std::scoped_lock _l(mLock);
// 刷新配置
// 其实就是更新 InputReader::mConfig
refreshConfigurationLocked(0);
// 更新 InputReader::mGlobalMetaState
// 与键盘输入设备的meta按键相关
updateGlobalMetaStateLocked();
} // release lock
}
InputReader 的构造函数很简单,就是成员变量的初始化。其中需要重点看下 refreshConfigurationLocked(0) 是如何刷新 InputReader 配置
// 注意,此时参数 changes 为 0
void InputReader::refreshConfigurationLocked(uint32_t changes) {
// 通过 InputReaderPolicyInterface 获取配置,保存到 InputReader::mConfig 中
mPolicy->getReaderConfiguration(&mConfig);
// EventHub 保存排除的设备
mEventHub->setExcludedDevices(mConfig.excludedDeviceNames);
if (!changes) return;
// ...
}
原来 InputReader::mConfig 代表的就是 InputReader 的配置,并且是通过 InputReaderPolicyInterface mPolicy 获取配置的。
从 InputManagerService: 创建与启动 可知,InputReaderPolicyInterface 接口的实现者是 NativeInputManager ,而 NativeInputManager 是 Input 系统的上层与底层沟通的桥梁,因此 InputReader 必定是通过 NativeInputManager 向上层获取配置
void NativeInputManager::getReaderConfiguration(InputReaderConfiguration* outConfig) {
ATRACE_CALL();
JNIEnv* env = jniEnv();
// 1. 通过JNI,向上层 InputManagerService 获取配置,并保存到 outConfig 中
jint virtualKeyQuietTime = env->CallIntMethod(mServiceObj,
gServiceClassInfo.getVirtualKeyQuietTimeMillis);
if (!checkAndClearExceptionFromCallback(env, "getVirtualKeyQuietTimeMillis")) {
outConfig->virtualKeyQuietTime = milliseconds_to_nanoseconds(virtualKeyQuietTime);
}
outConfig->excludedDeviceNames.clear();
jobjectArray excludedDeviceNames = jobjectArray(env->CallStaticObjectMethod(
gServiceClassInfo.clazz, gServiceClassInfo.getExcludedDeviceNames));
if (!checkAndClearExceptionFromCallback(env, "getExcludedDeviceNames") && excludedDeviceNames) {
jsize length = env->GetArrayLength(excludedDeviceNames);
for (jsize i = 0; i < length; i++) {
std::string deviceName = getStringElementFromJavaArray(env, excludedDeviceNames, i);
outConfig->excludedDeviceNames.push_back(deviceName);
}
env->DeleteLocalRef(excludedDeviceNames);
}
// Associations between input ports and display ports
// The java method packs the information in the following manner:
// Original data: [{'inputPort1': '1'}, {'inputPort2': '2'}]
// Received data: ['inputPort1', '1', 'inputPort2', '2']
// So we unpack accordingly here.
outConfig->portAssociations.clear();
jobjectArray portAssociations = jobjectArray(env->CallObjectMethod(mServiceObj,
gServiceClassInfo.getInputPortAssociations));
if (!checkAndClearExceptionFromCallback(env, "getInputPortAssociations") && portAssociations) {
jsize length = env->GetArrayLength(portAssociations);
for (jsize i = 0; i < length / 2; i++) {
std::string inputPort = getStringElementFromJavaArray(env, portAssociations, 2 * i);
std::string displayPortStr =
getStringElementFromJavaArray(env, portAssociations, 2 * i + 1);
uint8_t displayPort;
// Should already have been validated earlier, but do it here for safety.
bool success = ParseUint(displayPortStr, &displayPort);
if (!success) {
ALOGE("Could not parse entry in port configuration file, received: %s",
displayPortStr.c_str());
continue;
}
outConfig->portAssociations.insert({inputPort, displayPort});
}
env->DeleteLocalRef(portAssociations);
}
outConfig->uniqueIdAssociations.clear();
jobjectArray uniqueIdAssociations = jobjectArray(
env->CallObjectMethod(mServiceObj, gServiceClassInfo.getInputUniqueIdAssociations));
if (!checkAndClearExceptionFromCallback(env, "getInputUniqueIdAssociations") &&
uniqueIdAssociations) {
jsize length = env->GetArrayLength(uniqueIdAssociations);
for (jsize i = 0; i < length / 2; i++) {
std::string inputDeviceUniqueId =
getStringElementFromJavaArray(env, uniqueIdAssociations, 2 * i);
std::string displayUniqueId =
getStringElementFromJavaArray(env, uniqueIdAssociations, 2 * i + 1);
outConfig->uniqueIdAssociations.insert({inputDeviceUniqueId, displayUniqueId});
}
env->DeleteLocalRef(uniqueIdAssociations);
}
jint hoverTapTimeout = env->CallIntMethod(mServiceObj,
gServiceClassInfo.getHoverTapTimeout);
if (!checkAndClearExceptionFromCallback(env, "getHoverTapTimeout")) {
jint doubleTapTimeout = env->CallIntMethod(mServiceObj,
gServiceClassInfo.getDoubleTapTimeout);
if (!checkAndClearExceptionFromCallback(env, "getDoubleTapTimeout")) {
jint longPressTimeout = env->CallIntMethod(mServiceObj,
gServiceClassInfo.getLongPressTimeout);
if (!checkAndClearExceptionFromCallback(env, "getLongPressTimeout")) {
outConfig->pointerGestureTapInterval = milliseconds_to_nanoseconds(hoverTapTimeout);
// We must ensure that the tap-drag interval is significantly shorter than
// the long-press timeout because the tap is held down for the entire duration
// of the double-tap timeout.
jint tapDragInterval = max(min(longPressTimeout - 100,
doubleTapTimeout), hoverTapTimeout);
outConfig->pointerGestureTapDragInterval =
milliseconds_to_nanoseconds(tapDragInterval);
}
}
}
jint hoverTapSlop = env->CallIntMethod(mServiceObj,
gServiceClassInfo.getHoverTapSlop);
if (!checkAndClearExceptionFromCallback(env, "getHoverTapSlop")) {
outConfig->pointerGestureTapSlop = hoverTapSlop;
}
// 2. 从 NativeInputManager::mLocked 更新配置,保存到 outConfig 中
// NativeInputManager::mLocked 的数据是上层经由 InputManagerService 传入的
{ // acquire lock
AutoMutex _l(mLock);
outConfig->pointerVelocityControlParameters.scale = exp2f(mLocked.pointerSpeed
* POINTER_SPEED_EXPONENT);
outConfig->pointerGesturesEnabled = mLocked.pointerGesturesEnabled;
outConfig->showTouches = mLocked.showTouches;
outConfig->pointerCapture = mLocked.pointerCapture;
outConfig->setDisplayViewports(mLocked.viewports);
outConfig->defaultPointerDisplayId = mLocked.pointerDisplayId;
outConfig->disabledDevices = mLocked.disabledInputDevices;
} // release lock
}
从整体看,获取 InputReader 配置的方式有两种
- 通过 JNI 向上层的 InputManagerService 获取配置。
- 从 NativeInputManager::mLocked 获取配置。
从 InputManagerService: 创建与启动 可知,NativeInputManager::mLocked 是在 NativeInputManager 的构造函数中进行初始化的,但是它并不是不变的,而是上层经由 InputManagerService 进行操控的。
例如,mLocked.showTouches 对应开发者模式下的 Show taps 功能,InputManagerService 会监听这个开关的状态,相应地改变 mLocked.showTouches,并且会通知 InputReader 配置改变了,InputReader 在处理配置改变的过程时,会重新获取 mLocked.showTouches 这个配置。
有 一部分 的配置是可以通过 adb shell dumpsys input 命令进行查看的
Input Manager State:
Interactive: true
System UI Lights Out: false
Pointer Speed: 0
Pointer Gestures Enabled: true
Show Touches: false
Pointer Capture: Disabled, seq=0
而另外一部分配置,由于会对输入设备进行配置,因此可以从 dump 出的输入设备的信息中查看。
InputReader 的运行
从 InputManagerService: 创建与启动 可知,InputReader 通过线程,循环调用 InputReader::loopOnce() 执行任务
void InputReader::loopOnce() {
int32_t oldGeneration;
int32_t timeoutMillis;
bool inputDevicesChanged = false;
std::vector<InputDeviceInfo> inputDevices;
{ // acquire lock
std::scoped_lock _l(mLock);
oldGeneration = mGeneration;
timeoutMillis = -1;
// 1. 如果配置有改变,那么就刷新配置
uint32_t changes = mConfigurationChangesToRefresh;
if (changes) {
mConfigurationChangesToRefresh = 0;
timeoutMillis = 0;
// 刷新配置
refreshConfigurationLocked(changes);
} else if (mNextTimeout != LLONG_MAX) {
nsecs_t now = systemTime(SYSTEM_TIME_MONOTONIC);
timeoutMillis = toMillisecondTimeoutDelay(now, mNextTimeout);
}
} // release lock
// 2. 从 EventHub 获取事件
size_t count = mEventHub->getEvents(timeoutMillis, mEventBuffer, EVENT_BUFFER_SIZE);
{ // acquire lock
std::scoped_lock _l(mLock);
mReaderIsAliveCondition.notify_all();
// 3. 处理事件
if (count) {
processEventsLocked(mEventBuffer, count);
}
if (mNextTimeout != LLONG_MAX) {
nsecs_t now = systemTime(SYSTEM_TIME_MONOTONIC);
if (now >= mNextTimeout) {
mNextTimeout = LLONG_MAX;
timeoutExpiredLocked(now);
}
}
// 4. 处理输入设备改变
// 4.1 输入设备改变,重新获取输入设备信息
if (oldGeneration != mGeneration) {
inputDevicesChanged = true;
inputDevices = getInputDevicesLocked();
}
} // release lock
// 4.2 通知监听者,输入设备改变了
if (inputDevicesChanged) {
mPolicy->notifyInputDevicesChanged(inputDevices);
}
// 5. 刷新队列中缓存的事件
// 其实就是把事件分发给 InputClassifier
mQueuedListener->flush();
}
InputReader 所做的事情如下
- 如果配置改变了,那么就更新配置。
- 从 EventHub 获取事件,并处理获取到的事件。在处理事件的过程中,InputReader 会对事件进行加工,然后保存到 QueuedInputListener 缓存队列中。
- 如果设备发生改变,那么重新获取新的设备信息,并通知监听者。
- QueuedInputListener 刷新缓存的事件,其实就是把 InputReader 加工后的事件分发给 InputClassifer。
EventHub 提供事件
InputReader 的本质就是处理从 EventHub 获取的事件,然后分发给下一环。因为我们必须了解 EventHub::getEvents() 是如何为 InputReader 提供事件的
// EventHub.cpp
size_t EventHub::getEvents(int timeoutMillis, RawEvent* buffer, size_t bufferSize) {
ALOG_ASSERT(bufferSize >= 1);
std::scoped_lock _l(mLock);
struct input_event readBuffer[bufferSize];
RawEvent* event = buffer;
size_t capacity = bufferSize;
bool awoken = false;
for (;;) {
nsecs_t now = systemTime(SYSTEM_TIME_MONOTONIC);
// Reopen input devices if needed.
if (mNeedToReopenDevices) {
// ...
}
// Report any devices that had last been added/removed.
for (auto it = mClosingDevices.begin(); it != mClosingDevices.end();) {
// ...
}
// 扫描输入设备
if (mNeedToScanDevices) {
mNeedToScanDevices = false;
scanDevicesLocked();
mNeedToSendFinishedDeviceScan = true;
}
// 为扫描后打开的每一个输入设备,填充一个类型为 DEVICE_ADDED 的事件
while (!mOpeningDevices.empty()) {
std::unique_ptr<Device> device = std::move(*mOpeningDevices.rbegin());
mOpeningDevices.pop_back();
event->when = now;
event->deviceId = device->id == mBuiltInKeyboardId ? 0 : device->id;
event->type = DEVICE_ADDED;
event += 1;
// Try to find a matching video device by comparing device names
for (auto it = mUnattachedVideoDevices.begin(); it != mUnattachedVideoDevices.end();
it++) {
// ...
}
// 每次填充完事件,就把设备 Device 保存到 mDevices 中
auto [dev_it, inserted] = mDevices.insert_or_assign(device->id, std::move(device));
if (!inserted) {
ALOGW("Device id %d exists, replaced.", device->id);
}
// 表明你需要发送设备扫描完成事件
mNeedToSendFinishedDeviceScan = true;
if (--capacity == 0) {
break;
}
}
// 填充设备扫描完成事件
if (mNeedToSendFinishedDeviceScan) {
mNeedToSendFinishedDeviceScan = false;
event->when = now;
event->type = FINISHED_DEVICE_SCAN;
event += 1;
if (--capacity == 0) {
break;
}
}
// Grab the next input event.
bool deviceChanged = false;
// 处理 epoll 事件
while (mPendingEventIndex < mPendingEventCount) {
// 处理 inotify 事件,表明输入设备新增或者删除
const struct epoll_event& eventItem = mPendingEventItems[mPendingEventIndex++];
if (eventItem.data.fd == mINotifyFd) {
if (eventItem.events & EPOLLIN) {
mPendingINotify = true;
} else {
ALOGW("Received unexpected epoll event 0x%08x for INotify.", eventItem.events);
}
continue;
}
// 处理管道事件,这是用来唤醒 InputReader 线程
if (eventItem.data.fd == mWakeReadPipeFd) {
if (eventItem.events & EPOLLIN) {
ALOGV("awoken after wake()");
awoken = true;
char wakeReadBuffer[16];
ssize_t nRead;
do {
nRead = read(mWakeReadPipeFd, wakeReadBuffer, sizeof(wakeReadBuffer));
} while ((nRead == -1 && errno == EINTR) || nRead == sizeof(wakeReadBuffer));
} else {
ALOGW("Received unexpected epoll event 0x%08x for wake read pipe.",
eventItem.events);
}
continue;
}
// 接下来是处理设备的输入事件
Device* device = getDeviceByFdLocked(eventItem.data.fd);
if (device == nullptr) {
continue;
}
if (device->videoDevice && eventItem.data.fd == device->videoDevice->getFd()) {
// ...
}
if (eventItem.events & EPOLLIN) {
// 读取输入事件以及数量
int32_t readSize =
read(device->fd, readBuffer, sizeof(struct input_event) * capacity);
if (readSize == 0 || (readSize < 0 && errno == ENODEV)) {
// Device was removed before INotify noticed.
ALOGW("could not get event, removed? (fd: %d size: %" PRId32
" bufferSize: %zu capacity: %zu errno: %d)\n",
device->fd, readSize, bufferSize, capacity, errno);
deviceChanged = true;
closeDeviceLocked(*device);
} else if (readSize < 0) {
if (errno != EAGAIN && errno != EINTR) {
ALOGW("could not get event (errno=%d)", errno);
}
} else if ((readSize % sizeof(struct input_event)) != 0) {
ALOGE("could not get event (wrong size: %d)", readSize);
} else {
int32_t deviceId = device->id == mBuiltInKeyboardId ? 0 : device->id;
// 为每一个输入事件,填充一个事件
size_t count = size_t(readSize) / sizeof(struct input_event);
for (size_t i = 0; i < count; i++) {
struct input_event& iev = readBuffer[i];
event->when = processEventTimestamp(iev);
event->readTime = systemTime(SYSTEM_TIME_MONOTONIC);
event->deviceId = deviceId;
event->type = iev.type;
event->code = iev.code;
event->value = iev.value;
event += 1;
capacity -= 1;
}
if (capacity == 0) {
// The result buffer is full. Reset the pending event index
// so we will try to read the device again on the next iteration.
mPendingEventIndex -= 1;
break;
}
}
} else if (eventItem.events & EPOLLHUP) {
ALOGI("Removing device %s due to epoll hang-up event.",
device->identifier.name.c_str());
deviceChanged = true;
closeDeviceLocked(*device);
} else {
ALOGW("Received unexpected epoll event 0x%08x for device %s.", eventItem.events,
device->identifier.name.c_str());
}
}
// 处理设备改变
// mPendingEventIndex >= mPendingEventCount 表示处理完所有的输入事件后,再处理设备的改变
if (mPendingINotify && mPendingEventIndex >= mPendingEventCount) {
mPendingINotify = false;
readNotifyLocked();
deviceChanged = true;
}
// 设备发生改变,那么跳过当前循环,在下一个循环的开头处理设备改变
if (deviceChanged) {
continue;
}
// 如果有事件,或者被唤醒,那么终止循环,接下来 InputReader 会处理事件或者更新配置
if (event != buffer || awoken) {
break;
}
mPendingEventIndex = 0;
mLock.unlock(); // release lock before poll
// 此时没有事件,并且也没有被唤醒,那么超时等待 epoll 事件
int pollResult = epoll_wait(mEpollFd, mPendingEventItems, EPOLL_MAX_EVENTS, timeoutMillis);
mLock.lock(); // reacquire lock after poll
if (pollResult == 0) {
// 处理超时...
}
if (pollResult < 0) {
// 处理错误...
} else {
// 保存待处理事件的数量
mPendingEventCount = size_t(pollResult);
}
}
// 返回事件的数量
return event - buffer;
}
EventHub::getEvent() 提供事件的过程很长,但是现在我们不必去了解所有的细节,我们要有从整体看局部的眼光。EventHub 其实只生成了两类事件
- 设备的添加/删除事件。这种事件不是通过操作设备而产生的,系统称之为合成事件。
- 输入事件。这种事件是通过操作设备产生的,例如手指在触摸屏上滑动,系统称之为元输入事件。
看来我们得分两部分来分析这两类事件的生成以及处理过程,因此下一篇文章,我们分析合成事件的生成以及处理过程。
以上就是Input系统之InputReader概要性实例分析的详细内容,更多关于Input系统InputReader概要性的资料请关注编程网其它相关文章!