文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

学会Java字节码指令,成为技术大佬

2024-04-02 19:55

关注

Java 官方的虚拟机 Hotspot 是基于栈的,而不是基于寄存器的。

基于栈的优点是可移植性更好、指令更短、实现起来简单,但不能随机访问栈中的元素,完成相同功能所需要的指令数也比寄存器的要多,需要频繁的入栈和出栈。

基于寄存器的优点是速度快,有利于程序运行速度的优化,但操作数需要显式指定,指令也比较长。

Java 字节码由操作码和操作数组成。

由于 Java 虚拟机是基于栈而不是寄存器的结构,所以大多数指令都只有一个操作码。比如aload_0(将局部变量表中下标为 0 的数据压入操作数栈中)就只有操作码没有操作数,而 invokespecial #1(调用成员方法或者构造方法,并传递常量池中下标为 1 的常量)就是由操作码和操作数组成的。

01、加载与存储指令

加载(load)和存储(store)相关的指令是使用最频繁的指令,用于将数据从栈帧的局部变量表和操作数栈之间来回传递。

1)将局部变量表中的变量压入操作数栈中

解释一下

x 为操作码助记符,表明是哪一种数据类型。见下表所示。

像 arraylength 指令,没有操作码助记符,它没有代表数据类型的特殊字符,但操作数只能是一个数组类型的对象。

大部分的指令都不支持 byte、short 和 char,甚至没有任何指令支持 boolean 类型。编译器会将 byte 和 short 类型的数据带符号扩展(Sign-Extend)为 int 类型,将 boolean 和 char 零位扩展(Zero-Extend)为 int 类型。

举例来说:


private void load(int age, String name, long birthday, boolean sex) {
    System.out.println(age + name + birthday + sex);
}

通过 jclasslib 看一下 load() 方法(4 个参数)的字节码指令。

通过查看局部变量表就能关联上了。

2)将常量池中的常量压入操作数栈中

根据数据类型和入栈内容的不同,此类又可以细分为 const 系列、push 系列和 Idc 指令。

const 系列,用于特殊的常量入栈,要入栈的常量隐含在指令本身。

push 系列,主要包括 bipush 和 sipush,前者接收 8 位整数作为参数,后者接收 16 位整数。

Idc 指令,当 const 和 push 不能满足的时候,万能的 Idc 指令就上场了,它接收一个 8 位的参数,指向常量池中的索引。

举例来说:


public void pushConstLdc() {
    // 范围 [-1,5]
    int iconst = -1;
    // 范围 [-128,127]
    int bipush = 127;
    // 范围 [-32768,32767]
    int sipush= 32767;
    // 其他 int
    int ldc = 32768;
    String aconst = null;
    String IdcString = "沉默王二";
}

 通过 jclasslib 看一下 pushConstLdc() 方法的字节码指令。

3)将栈顶的数据出栈并装入局部变量表中

主要是用来给局部变量赋值,这类指令主要以 store 的形式存在。

明白了 xload_ 和 xload,再看 xstore_ 和 xstore 就会轻松得多,作用反了一下而已。

大家来想一个问题,为什么要有 xstore_ 和 xload_ 呢?它们的作用和 xstore n、xload n 不是一样的吗?

xstore_ 和 xstore n 的区别在于,前者相当于只有操作码,占用 1 个字节;后者相当于由操作码和操作数组成,操作码占 1 个字节,操作数占 2 个字节,一共占 3 个字节。

由于局部变量表中前几个位置总是非常常用,虽然 xstore_<n> 和 xload_<n> 增加了指令数量,但字节码的体积变小了!

举例来说:


public void store(int age, String name) {
    int temp = age + 2;
    String str = name;
}

通过 jclasslib 看一下 store() 方法的字节码指令。

通过查看局部变量表就能关联上了。

02、算术指令

算术指令用于对两个操作数栈上的值进行某种特定运算,并把结果重新压入操作数栈。可以分为两类:整型数据的运算指令和浮点数据的运算指令。

需要注意的是,数据运算可能会导致溢出,比如两个很大的正整数相加,很可能会得到一个负数。但 Java 虚拟机规范中并没有对这种情况给出具体结果,因此程序是不会显式报错的。所以,大家在开发过程中,如果涉及到较大的数据进行加法、乘法运算的时候,一定要注意!

当发生溢出时,将会使用有符号的无穷大 Infinity 来表示;如果某个操作结果没有明确的数学定义的话,将会使用 NaN 值来表示。而且所有使用 NaN 作为操作数的算术操作,结果都会返回 NaN。

举例来说:


public void infinityNaN() {
    int i = 10;
    double j = i / 0.0;
    System.out.println(j); // Infinity

    double d1 = 0.0;
    double d2 = d1 / 0.0;
    System.out.println(d2); // NaN
}

Java 虚拟机提供了两种运算模式:

我把所有的算术指令列一下:

举例来说:


public void calculate(int age) {
    int add = age + 1;
    int sub = age - 1;
    int mul = age * 2;
    int div = age / 3;
    int rem = age % 4;
    age++;
    age--;
}

通过 jclasslib 看一下 calculate() 方法的字节码指令。

 03、类型转换指令

可以分为两种:

1)宽化,小类型向大类型转换,比如 int–>long–>float–>double,对应的指令有:i2l、i2f、i2d、l2f、l2d、f2d。

2)窄化,大类型向小类型转换,比如从 int 类型到 byte、short 或者 char,对应的指令有:i2b、i2s、i2c;从 long 到 int,对应的指令有:l2i;从 float 到 int 或者 long,对应的指令有:f2i、f2l;从 double 到 int、long 或者 float,对应的指令有:d2i、d2l、d2f。

窄化很可能会发生精度丢失,毕竟是不同的数量级;

但 Java 虚拟机并不会因此抛出运行时异常。

举例来说:


public void updown() {
    int i = 10;
    double d = i;
    
    float f = 10f;
    long ong = (long)f;
}

通过 jclasslib 看一下 updown() 方法的字节码指令。

 04、对象的创建和访问指令

Java 是一门面向对象的编程语言,那么 Java 虚拟机是如何从字节码层面进行支持的呢?

1)创建指令

数组也是一种对象,但它创建的字节码指令和普通的对象不同。创建数组的指令有三种:

普通对象的创建指令只有一个,就是 new,它会接收一个操作数,指向常量池中的一个索引,表示要创建的类型。

举例来说:


public void newObject() {
    String name = new String("沉默王二");
    File file = new File("无愁河的浪荡汉子.book");
    int [] ages = {};
}

通过 jclasslib 看一下 newObject() 方法的字节码指令。

2)字段访问指令

字段可以分为两类,一类是成员变量,一类是静态变量(static 关键字修饰的),所以字段访问指令可以分为两类:

举例来说:


public class Writer {
    private String name;
    static String mark = "作者";

    public static void main(String[] args) {
        print(mark);
        Writer w = new Writer();
        print(w.name);
    }

    public static void print(String arg) {
        System.out.println(arg);
    }
}

通过 jclasslib 看一下 main() 方法的字节码指令。

 05、方法调用和返回指令

方法调用指令有 5 个,分别用于不同的场景:

举例来说:


public class InvokeExamples {
    private void run() {
        List ls = new ArrayList();
        ls.add("难顶");

        ArrayList als = new ArrayList();
        als.add("学不动了");
    }

    public static void print() {
        System.out.println("invokestatic");
    }

    public static void main(String[] args) {
        print();
        InvokeExamples invoke = new InvokeExamples();
        invoke.run();
    }
}

我们用 javap -c InvokeExamples.class 来反编译一下。


Compiled from "InvokeExamples.java"
public class com.itwanger.jvm.InvokeExamples {
  public com.itwanger.jvm.InvokeExamples();
    Code:
       0: aload_0
       1: invokespecial #1                  // Method java/lang/Object."<init>":()V
       4: return

  private void run();
    Code:
       0: new           #2                  // class java/util/ArrayList
       3: dup
       4: invokespecial #3                  // Method java/util/ArrayList."<init>":()V
       7: astore_1
       8: aload_1
       9: ldc           #4                  // String 难顶
      11: invokeinterface #5,  2            // InterfaceMethod java/util/List.add:(Ljava/lang/Object;)Z
      16: pop
      17: new           #2                  // class java/util/ArrayList
      20: dup
      21: invokespecial #3                  // Method java/util/ArrayList."<init>":()V
      24: astore_2
      25: aload_2
      26: ldc           #6                  // String 学不动了
      28: invokevirtual #7                  // Method java/util/ArrayList.add:(Ljava/lang/Object;)Z
      31: pop
      32: return

  public static void print();
    Code:
       0: getstatic     #8                  // Field java/lang/System.out:Ljava/io/PrintStream;
       3: ldc           #9                  // String invokestatic
       5: invokevirtual #10                 // Method java/io/PrintStream.println:(Ljava/lang/String;)V
       8: return

  public static void main(java.lang.String[]);
    Code:
       0: invokestatic  #11                 // Method print:()V
       3: new           #12                 // class com/itwanger/jvm/InvokeExamples
       6: dup
       7: invokespecial #13                 // Method "<init>":()V
      10: astore_1
      11: aload_1
      12: invokevirtual #14                 // Method run:()V
      15: return
}

InvokeExamples 类有 4 个方法,包括缺省的构造方法在内。

1)InvokeExamples() 构造方法中

缺省的构造方法内部会调用超类 Object 的初始化构造方法:


`invokespecial #1 // Method java/lang/Object."<init>":()V`

2)成员方法 run() 中


invokeinterface #5, 2 // InterfaceMethod java/util/List.add:(Ljava/lang/Object;)Z

由于 ls 变量的引用类型为接口 List,所以 ls.add() 调用的是 invokeinterface 指令,等运行时再确定是不是接口 List 的实现对象 ArrayList 的 add() 方法。


invokevirtual #7 // Method java/util/ArrayList.add:(Ljava/lang/Object;)Z

由于 als 变量的引用类型已经确定为 ArrayList,所以 als.add() 方法调用的是 invokevirtual 指令。

3)main() 方法中


invokestatic #11 // Method print:()V

print() 方法是静态的,所以调用的是 invokestatic 指令。

方法返回指令根据方法的返回值类型进行区分,常见的返回指令见下图。

06、操作数栈管理指令

常见的操作数栈管理指令有 pop、dup 和 swap。

这些指令不需要指明数据类型,因为是按照位置压入和弹出的。

举例来说:


public class Dup {
    int age;
    public int incAndGet() {
        return ++age;
    }
}

通过 jclasslib 看一下 incAndGet() 方法的字节码指令。

 07、控制转移指令

控制转移指令包括:

1)比较指令

比较指令有:dcmpg,dcmpl、fcmpg、fcmpl、lcmp,指令的第一个字母代表的含义分别是 double、float、long。注意,没有 int 类型。

对于 double 和 float 来说,由于 NaN 的存在,有两个版本的比较指令。拿 float 来说,有 fcmpg 和 fcmpl,区别在于,如果遇到 NaN,fcmpg 会将 1 压入栈,fcmpl 会将 -1 压入栈。

举例来说。


public void lcmp(long a, long b) {
    if(a > b){}
}

通过 jclasslib 看一下 lcmp() 方法的字节码指令。

lcmp 用于两个 long 型的数据进行比较。

2)条件跳转指令

这些指令都会接收两个字节的操作数,它们的统一含义是,弹出栈顶元素,测试它是否满足某一条件,满足的话,跳转到对应位置。

对于 long、float 和 double 类型的条件分支比较,会先执行比较指令返回一个整形值到操作数栈中后再执行 int 类型的条件跳转指令。

对于 boolean、byte、char、short,以及 int,则直接使用条件跳转指令来完成。

举例来说。


public void fi() {
    int a = 0;
    if (a == 0) {
        a = 10;
    } else {
        a = 20;
    }
}

通过 jclasslib 看一下 fi() 方法的字节码指令。

3 ifne 12 (+9) 的意思是,如果栈顶的元素不等于 0,跳转到第 12(3+9)行 12 bipush 20。

3)比较条件转指令

前缀“if_”后,以字符“i”开头的指令针对 int 型整数进行操作,以字符“a”开头的指令表示对象的比较。

举例来说:


public void compare() {
    int i = 10;
    int j = 20;
    System.out.println(i > j);
}

通过 jclasslib 看一下 compare() 方法的字节码指令。

11 if_icmple 18 (+7) 的意思是,如果栈顶的两个 int 类型的数值比较的话,如果前者小于后者时跳转到第 18 行(11+7)。

4)多条件分支跳转指令

主要有 tableswitch 和 lookupswitch,前者要求多个条件分支值是连续的,它内部只存放起始值和终止值,以及若干个跳转偏移量,通过给定的操作数 index,可以立即定位到跳转偏移量位置,因此效率比较高;后者内部存放着各个离散的 case-offset 对,每次执行都要搜索全部的 case-offset 对,找到匹配的 case 值,并根据对应的 offset 计算跳转地址,因此效率较低。

举例来说:


public void switchTest(int select) {
    int num;
    switch (select) {
        case 1:
            num = 10;
            break;
        case 2:
        case 3:
            num = 30;
            break;
        default:
            num = 40;
    }
}

通过 jclasslib 看一下 switchTest() 方法的字节码指令。

case 2 的时候没有 break,所以 case 2 和 case 3 是连续的,用的是 tableswitch。如果等于 1,跳转到 28 行;如果等于 2 和 3,跳转到 34 行,如果是 default,跳转到 40 行。

5)无条件跳转指令

goto 指令接收两个字节的操作数,共同组成一个带符号的整数,用于指定指令的偏移量,指令执行的目的就是跳转到偏移量给定的位置处。

前面的例子里都出现了 goto 的身影,也很好理解。如果指令的偏移量特别大,超出了两个字节的范围,可以使用指令 goto_w,接收 4 个字节的操作数。

想要走得更远,Java 字节码这块就必须得硬碰硬地吃透,希望这些分享可以帮助到大家~

路漫漫其修远兮,吾将上下而求索

除了以上这些指令,还有异常处理指令和同步控制指令,很多Java 方面的系列文章,例如 Java 核心语法、Java 集合框架、Java IO、Java 并发编程、Java 虚拟机等,持续更新中,希望大家多多关注支持编程网!

阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     813人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     354人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     318人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     435人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     224人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯