从编程的角度来说,波动光学在某些情况下可以简单地理解为在光线模型的基础上,引入一个相位项。
波动模型
一般来说,三个特征可以确定空间中的波场:频率、振幅和相位,故光波场可表示为:
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
z = np.arange(15,200)*10 #单位为nm
x = np.arange(15,200)*10
x,z = np.meshgrid(x,z) #创建坐标系
E = 1/np.sqrt(x**2+z**2)*np.cos(2*np.pi*np.sqrt(x**2+z**2)/(532*1e-9))
fig = plt.figure()
ax = Axes3D(fig)
ax.plot_surface(x,z,E)
plt.show()
其结果如图所示
相速度
该式表示各等相位面前进的速度,为相速度。
群速度
假设两列波的波长分别为532nm和600nm,则在同一时刻,不同位置处的光波振幅可通过python画出
def wavePacket(d = [532e-9,600e-9]):
d = np.array(d)
k = 2*np.pi/d #波数
dk = k[0]-k[1] #波数差
bk = k[1]+dk/2 #平均波数
z = np.arange(10000)/1e9 #位置为0到10um
E0 = np.cos(-k[0]*z)
E1 = np.cos(-k[1]*z)
E = E0+E1
#E = 2*np.cos(-dk/2*z)*np.cos(-bk*z)
fig = plt.figure()
plt.plot(z,E0,'--',color='red',label='E0')
plt.plot(z,E1,'--',color='blue',label='E1')
plt.plot(z,E,'-',color='green',label='E')
plt.legend()
plt.show()
可见每间隔一段距离或者时间就会出现一个比较大的振幅,其极大间隔可以通过表达式求出
为群速度,表示波包的传播速度。
以上就是python光学仿真相速度和群速度理解学习的详细内容,更多关于python光学仿真相速度和群速度的资料请关注编程网其它相关文章!