文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

Python Numpy入门基础(一)创建数组

2023-09-02 10:25

关注

创建数组

1- np.array()

参数众多,初学时只要关注基本用法。

array(...)    array(object, dtype=None, *, copy=True, order='K', subok=False, ndmin=0,          like=None)        Create an array.        Parameters    ----------    object : array_like        An array, any object exposing the array interface, an object whose        __array__ method returns an array, or any (nested) sequence.    dtype : data-type, optional        The desired data-type for the array.  If not given, then the type will        be determined as the minimum type required to hold the objects in the        sequence.    copy : bool, optional        If true (default), then the object is copied.  Otherwise, a copy will        only be made if __array__ returns a copy, if obj is a nested sequence,        or if a copy is needed to satisfy any of the other requirements        (`dtype`, `order`, etc.).    order : {'K', 'A', 'C', 'F'}, optional        Specify the memory layout of the array. If object is not an array, the        newly created array will be in C order (row major) unless 'F' is        specified, in which case it will be in Fortran order (column major).        If object is an array the following holds.            ===== ========= ===================================================        order  no copy                     copy=True        ===== ========= ===================================================        'K'   unchanged F & C order preserved, otherwise most similar order        'A'   unchanged F order if input is F and not C, otherwise C order        'C'   C order   C order        'F'   F order   F order        ===== ========= ===================================================            When ``copy=False`` and a copy is made for other reasons, the result is        the same as if ``copy=True``, with some exceptions for 'A', see the        Notes section. The default order is 'K'.    subok : bool, optional        If True, then sub-classes will be passed-through, otherwise        the returned array will be forced to be a base-class array (default).    ndmin : int, optional        Specifies the minimum number of dimensions that the resulting        array should have.  Ones will be pre-pended to the shape as        needed to meet this requirement.    like : array_like        Reference object to allow the creation of arrays which are not        NumPy arrays. If an array-like passed in as ``like`` supports        the ``__array_function__`` protocol, the result will be defined        by it. In this case, it ensures the creation of an array object        compatible with that passed in via this argument.            .. versionadded:: 1.20.0

元组、列表转换

>>> import numpy as np>>> np.array((1,2,3))array([1, 2, 3])>>> np.array([3,2,3])array([3, 2, 3])>>> np.array([[3,2,3],[4,5,6]])array([[3, 2, 3],       [4, 5, 6]])

内置函数 range()

>>> import numpy as np>>> np.array(range(5))array([0, 1, 2, 3, 4])>>> np.array(range(2,11,2))array([ 2,  4,  6,  8, 10])>>> np.array([range(1,5),range(5,9)])array([[1, 2, 3, 4],       [5, 6, 7, 8]])

数组副本copy,开辟一块新内存复制原数组

>>> import numpy as np>>> a = np.array([1,2,3])>>> b = np.array(a)>>> barray([1, 2, 3])>>> a[0] = 3>>> a,b(array([3, 2, 3]), array([1, 2, 3]))

主要参数:
dtype=     数组元素的数据类型,可选
copy=      对象是否需要复制,可选
order=     创建数组的样式,C为行方向,F为列方向,A为任意方向(默认)
subok=    默认返回一个与基类类型一致的数组
ndmin=    指定生成数组的最小维度

>>> import numpy as np>>> np.array([[1, 2, 3, 4]], dtype=float)array([[1., 2., 3., 4.]])>>> np.array([[1, 2], [3, 4]], dtype=complex)array([[1.+0.j, 2.+0.j],       [3.+0.j, 4.+0.j]])>>> np.array([[1, 2, 3, 4]], dtype=np.int64)array([[1, 2, 3, 4]], dtype=int64)>>> np.array({1, 2, 3, 4})array({1, 2, 3, 4}, dtype=object)>>> np.array({1, 2, 3, 4}).dtypedtype('O') #集合只能作一个整体,大写字母O,即object>>> np.array([[1, 2, 3, 4]], dtype=np.int64).dtypedtype('int64')>>> np.array([[1, 2], [3, 4, 5]])array([list([1, 2]), list([3, 4, 5])], dtype=object)>>> np.array([[1, 2], [3, 4, 5]]).dtypedtype('O')>>> >>> np.array([1, 2, 3, 4, 5], ndmin =  1)array([1, 2, 3, 4, 5])>>> np.array([1, 2, 3, 4, 5], ndmin =  2)array([[1, 2, 3, 4, 5]])>>> np.array([1, 2, 3, 4, 5], ndmin =  3)array([[[1, 2, 3, 4, 5]]])>>>

2.1- 基本属性 .shape  .ndim .dtype .size等

>>> a = np.array(range(2,11,2))>>> b = np.array([range(1,5),range(5,9)])>>> a.shape(5,)>>> b.shape(2, 4)>>> a.ndim, b.ndim(1, 2)>>> np.array(1)array(1)>>> np.array(1).ndim0 #常数为0维>>> a.dtype.name, b.dtype.name('int32', 'int32')>>> a.size, b.size(5, 8)>>> type(a), type(b)(, )>>> aarray([ 2,  4,  6,  8, 10])>>> barray([[1, 2, 3, 4],       [5, 6, 7, 8]])>>> print(a)[ 2  4  6  8 10]>>> print(b)[[1 2 3 4] [5 6 7 8]]

.ndim      秩,即轴的数量或维度的数量
.shape    数组的维度,对于矩阵,n 行 m 列
.size       数组元素的总个数,相当于 .shape 中 n*m 的值
.dtype     对象的元素类型
.itemsize     对象中每个元素的大小,以字节为单位
.flags      对象的内存信息
.real       元素的实部
.imag     元素的虚部
.data      包含实际数组元素的缓冲区,由于一般通过数组的索引获取元素,所以通常不需要使用这个属性。 

2.2- 与属性同名的方法

除.itemsize .flags .data外者有同名方法,其它有方法的参数都为ndarray,dtype()除外。

>>> a = np.array([*range(5)],dtype=complex)>>> np.ndim(a)1>>> np.shape(a)(5,)>>> np.size(a)5>>> np.real(a)array([0., 1., 2., 3., 4.])>>> np.imag(a)array([0., 0., 0., 0., 0.])>>> np.dtype(int)dtype('int32')>>> np.dtype(complex)dtype('complex128')>>> np.dtype(float)dtype('float64')>>> a.itemsize16>>> a.flags  C_CONTIGUOUS : True  F_CONTIGUOUS : True  OWNDATA : True  WRITEABLE : True  ALIGNED : True  WRITEBACKIFCOPY : False  UPDATEIFCOPY : False>>> a.data

3- np.arange()

arange(...)    arange([start,] stop[, step,], dtype=None, *, like=None)        Return evenly spaced values within a given interval.        Values are generated within the half-open interval ``[start, stop)``    (in other words, the interval including `start` but excluding `stop`).    For integer arguments the function is equivalent to the Python built-in    `range` function, but returns an ndarray rather than a list.        When using a non-integer step, such as 0.1, the results will often not    be consistent.  It is better to use `numpy.linspace` for these cases.        Parameters    ----------    start : integer or real, optional        Start of interval.  The interval includes this value.  The default        start value is 0.    stop : integer or real        End of interval.  The interval does not include this value, except        in some cases where `step` is not an integer and floating point        round-off affects the length of `out`.    step : integer or real, optional        Spacing between values.  For any output `out`, this is the distance        between two adjacent values, ``out[i+1] - out[i]``.  The default        step size is 1.  If `step` is specified as a position argument,        `start` must also be given.    dtype : dtype        The type of the output array.  If `dtype` is not given, infer the data        type from the other input arguments.    like : array_like        Reference object to allow the creation of arrays which are not        NumPy arrays. If an array-like passed in as ``like`` supports        the ``__array_function__`` protocol, the result will be defined        by it. In this case, it ensures the creation of an array object        compatible with that passed in via this argument.            .. versionadded:: 1.20.0

np.arange() 与 np.array(range()) 类似,但前者允许用浮点数

>>> np.arange(12)array([ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11])>>> np.arange(0,1.1,0.1)array([0. , 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1. ])>>> np.arange(2,5,0.3)array([2. , 2.3, 2.6, 2.9, 3.2, 3.5, 3.8, 4.1, 4.4, 4.7])

4- np.reshape()

reshape(a, newshape, order='C')    Gives a new shape to an array without changing its data.        Parameters    ----------    a : array_like        Array to be reshaped.    newshape : int or tuple of ints        The new shape should be compatible with the original shape. If        an integer, then the result will be a 1-D array of that length.        One shape dimension can be -1. In this case, the value is        inferred from the length of the array and remaining dimensions.    order : {'C', 'F', 'A'}, optional        Read the elements of `a` using this index order, and place the        elements into the reshaped array using this index order.  'C'        means to read / write the elements using C-like index order,        with the last axis index changing fastest, back to the first        axis index changing slowest. 'F' means to read / write the        elements using Fortran-like index order, with the first index        changing fastest, and the last index changing slowest. Note that        the 'C' and 'F' options take no account of the memory layout of        the underlying array, and only refer to the order of indexing.        'A' means to read / write the elements in Fortran-like index        order if `a` is Fortran *contiguous* in memory, C-like order        otherwise.        Returns    -------    reshaped_array : ndarray        This will be a new view object if possible; otherwise, it will        be a copy.  Note there is no guarantee of the *memory layout* (C- or        Fortran- contiguous) of the returned array.
>>> a = np.arange(8)>>> aarray([0, 1, 2, 3, 4, 5, 6, 7])>>> np.reshape(a,(2,4))array([[0, 1, 2, 3],       [4, 5, 6, 7]])>>> np.reshape(a,(4,2))array([[0, 1],       [2, 3],       [4, 5],       [6, 7]])>>> np.reshape(a,(8,1))array([[0],       [1],       [2],       [3],       [4],       [5],       [6],       [7]])>>> aarray([0, 1, 2, 3, 4, 5, 6, 7])>>> a.reshape(2,4)array([[0, 1, 2, 3],       [4, 5, 6, 7]])>>> aarray([0, 1, 2, 3, 4, 5, 6, 7])>>> a.reshape(4,2)array([[0, 1],       [2, 3],       [4, 5],       [6, 7]])>>> aarray([0, 1, 2, 3, 4, 5, 6, 7])

5- 数据类型

dtype对应的类型除了内置的int,float,complex等,可以用 np.bool_, np.int8, np.uint64:

bool_    布尔型数据类型(True 或者 False)
int_    默认的整数类型(类似于 C 语言中的 long,int32 或 int64)
intc    与 C 的 int 类型一样,一般是 int32 或 int 64
intp    用于索引的整数类型(类似于 C 的 ssize_t,一般情况下仍然是 int32 或 int64)
int8    字节(-128 to 127)
int16    整数(-32768 to 32767)
int32    整数(-2147483648 to 2147483647)
int64    整数(-9223372036854775808 to 9223372036854775807)
uint8    无符号整数(0 to 255)
uint16    无符号整数(0 to 65535)
uint32    无符号整数(0 to 4294967295)
uint64    无符号整数(0 to 18446744073709551615)
float_    float64 类型的简写
float16    半精度浮点数,包括:1 个符号位,5 个指数位,10 个尾数位
float32    单精度浮点数,包括:1 个符号位,8 个指数位,23 个尾数位
float64    双精度浮点数,包括:1 个符号位,11 个指数位,52 个尾数位
complex_    complex128 类型的简写,即 128 位复数
complex64    复数,表示双 32 位浮点数(实数部分和虚数部分)
complex128    复数,表示双 64 位浮点数(实数部分和虚数部分)

每个内建类型都有一个唯一定义它的字符代码:

b    布尔型
i    (有符号) 整型
u    无符号整型 integer
f    浮点型
c    复数浮点型
m    timedelta(时间间隔)
M    datetime(日期时间)
O    (Python) 对象
S, a    (byte-)字符串
U    Unicode
V    原始数据 (void)

int8, int16, int32, int64 -- i1, i2, i4, i8
uint8,uint16,uint32,uint64 -- u1, u2, u4, u8
float16,float32,float64,float128 -- f2, f4, f8, f16
或: float32,float64,float128 -- f, d, g
complex64,complex128,complex256 -- c8,c16,c32
bool -- ?

>>> import numpy as np>>> np.dtype([('name','S20'), ('age', 'i1'), ('marks', 'f4')])dtype([('name', 'S20'), ('age', 'i1'), ('marks', '>> import numpy as np>>> student = np.dtype([('name','S20'), ('age', 'i1'), ('marks', 'f4')])>>> studentdtype([('name', 'S20'), ('age', 'i1'), ('marks', '>> np.array([('abc', 21, 50),('xyz', 18, 75)], dtype = student)array([(b'abc', 21, 50.), (b'xyz', 18, 75.)],      dtype=[('name', 'S20'), ('age', 'i1'), ('marks', '>> a = np.array([('abc', 21, 50),('xyz', 18, 75)], dtype = student)>>> print(a)[(b'abc', 21, 50.) (b'xyz', 18, 75.)]

6- np.asarray()

asarray(...)    asarray(a, dtype=None, order=None, *, like=None)        Convert the input to an array.        Parameters    ----------    a : array_like        Input data, in any form that can be converted to an array.  This        includes lists, lists of tuples, tuples, tuples of tuples, tuples        of lists and ndarrays.    dtype : data-type, optional        By default, the data-type is inferred from the input data.    order : {'C', 'F', 'A', 'K'}, optional        Memory layout.  'A' and 'K' depend on the order of input array a.        'C' row-major (C-style),        'F' column-major (Fortran-style) memory representation.        'A' (any) means 'F' if `a` is Fortran contiguous, 'C' otherwise        'K' (keep) preserve input order        Defaults to 'C'.    like : array_like        Reference object to allow the creation of arrays which are not        NumPy arrays. If an array-like passed in as ``like`` supports        the ``__array_function__`` protocol, the result will be defined        by it. In this case, it ensures the creation of an array object        compatible with that passed in via this argument.            .. versionadded:: 1.20.0
>>> import numpy as np>>> a = np.array([1,2,3])>>> b = np.asarray(a)>>> a,b(array([1, 2, 3]), array([1, 2, 3]))>>> a[0]=3>>> a,b(array([3, 2, 3]), array([3, 2, 3]))

注意 b=asarray(a)  与 b=array(a) 的区别,前者两数组指向同一内存地址。

7- np.fromiter()

fromiter(...)    fromiter(iter, dtype, count=-1, *, like=None)        Create a new 1-dimensional array from an iterable object.        Parameters    ----------    iter : iterable object        An iterable object providing data for the array.    dtype : data-type        The data-type of the returned array.    count : int, optional        The number of items to read from *iterable*.  The default is -1,        which means all data is read.    like : array_like        Reference object to allow the creation of arrays which are not        NumPy arrays. If an array-like passed in as ``like`` supports        the ``__array_function__`` protocol, the result will be defined        by it. In this case, it ensures the creation of an array object        compatible with that passed in via this argument.            .. versionadded:: 1.20.0        Returns    -------    out : ndarray        The output array.        Notes    -----    Specify `count` to improve performance.  It allows ``fromiter`` to    pre-allocate the output array, instead of resizing it on demand.
>>> import numpy as np>>> np.fromiter(range(5),dtype=int)array([0, 1, 2, 3, 4])>>> np.fromiter(range(5),dtype=float)array([0., 1., 2., 3., 4.])>>> iterable = (x*x for x in range(5))>>> np.fromiter(iterable, float)array([ 0.,  1.,  4.,  9., 16.])>>> np.fromiter({1,2,3,4}, float)array([1., 2., 3., 4.])>>> np.array({1,2,3,4})array({1, 2, 3, 4}, dtype=object)#注意:array()不能从集合中取出元素,只能作为一个整体>>> np.fromiter('Hann Yang',dtype='S1')array([b'H', b'a', b'n', b'n', b' ', b'Y', b'a', b'n', b'g'], dtype='|S1')>>> np.fromiter(b'Hann Yang',dtype=np.uint8)array([ 72,  97, 110, 110,  32,  89,  97, 110, 103], dtype=uint8)#注意:字节串b''与字符串str的区别

8- np.frombuffer()

流的形式读入转化成 ndarray 对象,还可以分批读入。

frombuffer(...)    frombuffer(buffer, dtype=float, count=-1, offset=0, *, like=None)        Interpret a buffer as a 1-dimensional array.        Parameters    ----------    buffer : buffer_like        An object that exposes the buffer interface.    dtype : data-type, optional        Data-type of the returned array; default: float.    count : int, optional        Number of items to read. ``-1`` means all data in the buffer.    offset : int, optional        Start reading the buffer from this offset (in bytes); default: 0.    like : array_like        Reference object to allow the creation of arrays which are not        NumPy arrays. If an array-like passed in as ``like`` supports        the ``__array_function__`` protocol, the result will be defined        by it. In this case, it ensures the creation of an array object        compatible with that passed in via this argument.            .. versionadded:: 1.20.0
>>> np.frombuffer('Hann Yang',dtype='S1')Traceback (most recent call last):  File "", line 1, in     np.frombuffer('Hann Yang',dtype='S1')TypeError: a bytes-like object is required, not 'str'>>> np.frombuffer(b'Hann Yang',dtype='S1')array([b'H', b'a', b'n', b'n', b' ', b'Y', b'a', b'n', b'g'], dtype='|S1')>>> np.frombuffer(b'Hann Yang',dtype=int)Traceback (most recent call last):  File "", line 1, in     np.frombuffer(b'Hann Yang',dtype=int)ValueError: buffer size must be a multiple of element size>>> np.frombuffer(b'Hann Yang',dtype=np.uint8)array([ 72,  97, 110, 110,  32,  89,  97, 110, 103], dtype=uint8)>>> np.frombuffer(b'Hann Yang',dtype='S1')array([b'H', b'a', b'n', b'n', b' ', b'Y', b'a', b'n', b'g'], dtype='|S1')>>> np.frombuffer(b'Hann Yang',dtype=np.uint8)array([ 72,  97, 110, 110,  32,  89,  97, 110, 103], dtype=uint8)>>> np.frombuffer(b'Hann Yang',dtype=np.uint8,count=4)array([ 72,  97, 110, 110], dtype=uint8)>>> np.frombuffer(b'Hann Yang',dtype=np.uint8,count=4,offset=4)array([ 32,  89,  97, 110], dtype=uint8)>>> np.frombuffer(b'Hann Yang',dtype=np.uint8,count=-1,offset=8)array([103], dtype=uint8)

9.1- np.linspace()

以等差数列创建数组

linspace(start, stop, num=50, endpoint=True, retstep=False, dtype=None, axis=0)    Return evenly spaced numbers over a specified interval.        Returns `num` evenly spaced samples, calculated over the    interval [`start`, `stop`].        The endpoint of the interval can optionally be excluded.        .. versionchanged:: 1.16.0        Non-scalar `start` and `stop` are now supported.        .. versionchanged:: 1.20.0        Values are rounded towards ``-inf`` instead of ``0`` when an        integer ``dtype`` is specified. The old behavior can        still be obtained with ``np.linspace(start, stop, num).astype(int)``        Parameters    ----------    start : array_like        The starting value of the sequence.    stop : array_like        The end value of the sequence, unless `endpoint` is set to False.        In that case, the sequence consists of all but the last of ``num + 1``        evenly spaced samples, so that `stop` is excluded.  Note that the step        size changes when `endpoint` is False.    num : int, optional        Number of samples to generate. Default is 50. Must be non-negative.    endpoint : bool, optional        If True, `stop` is the last sample. Otherwise, it is not included.        Default is True.    retstep : bool, optional        If True, return (`samples`, `step`), where `step` is the spacing        between samples.    dtype : dtype, optional        The type of the output array.  If `dtype` is not given, the data type        is inferred from `start` and `stop`. The inferred dtype will never be        an integer; `float` is chosen even if the arguments would produce an        array of integers.            .. versionadded:: 1.9.0        axis : int, optional        The axis in the result to store the samples.  Relevant only if start        or stop are array-like.  By default (0), the samples will be along a        new axis inserted at the beginning. Use -1 to get an axis at the end.            .. versionadded:: 1.16.0

创建区间可以是全开区间,也可以前开后闭区间。 

>>> np.linspace(2.0, 3.0, num=5)array([2.  , 2.25, 2.5 , 2.75, 3.  ])>>> np.linspace(2.0, 3.0, num=5, endpoint=False)array([2. ,  2.2,  2.4,  2.6,  2.8])>>> np.linspace(2.0, 3.0, num=5, retstep=True)(array([2.  ,  2.25,  2.5 ,  2.75,  3.  ]), 0.25)>>> np.linspace(1, 1, 10, dtype=int)array([1, 1, 1, 1, 1, 1, 1, 1, 1, 1])

9.2- np.logspace() 

以对数数列创建数组

logspace(start, stop, num=50, endpoint=True, base=10.0, dtype=None, axis=0)    Return numbers spaced evenly on a log scale.        In linear space, the sequence starts at ``base ** start``    (`base` to the power of `start`) and ends with ``base ** stop``    (see `endpoint` below).        .. versionchanged:: 1.16.0        Non-scalar `start` and `stop` are now supported.        Parameters    ----------    start : array_like        ``base ** start`` is the starting value of the sequence.    stop : array_like        ``base ** stop`` is the final value of the sequence, unless `endpoint`        is False.  In that case, ``num + 1`` values are spaced over the        interval in log-space, of which all but the last (a sequence of        length `num`) are returned.    num : integer, optional        Number of samples to generate.  Default is 50.    endpoint : boolean, optional        If true, `stop` is the last sample. Otherwise, it is not included.        Default is True.    base : array_like, optional        The base of the log space. The step size between the elements in        ``ln(samples) / ln(base)`` (or ``log_base(samples)``) is uniform.        Default is 10.0.    dtype : dtype        The type of the output array.  If `dtype` is not given, the data type        is inferred from `start` and `stop`. The inferred type will never be        an integer; `float` is chosen even if the arguments would produce an        array of integers.    axis : int, optional        The axis in the result to store the samples.  Relevant only if start        or stop are array-like.  By default (0), the samples will be along a        new axis inserted at the beginning. Use -1 to get an axis at the end.            .. versionadded:: 1.16.0
>>> np.logspace(2.0, 3.0, num=4)array([ 100.        ,  215.443469  ,  464.15888336, 1000.        ])>>> np.logspace(2.0, 3.0, num=4, endpoint=False)array([100.        ,  177.827941  ,  316.22776602,  562.34132519])>>> np.logspace(2.0, 3.0, num=4, base=2.0)array([4.        ,  5.0396842 ,  6.34960421,  8.        ])

9.3- np.geomspace() 

geomspace(start, stop, num=50, endpoint=True, dtype=None, axis=0)    Return numbers spaced evenly on a log scale (a geometric progression).        This is similar to `logspace`, but with endpoints specified directly.    Each output sample is a constant multiple of the previous.        .. versionchanged:: 1.16.0        Non-scalar `start` and `stop` are now supported.        Parameters    ----------    start : array_like        The starting value of the sequence.    stop : array_like        The final value of the sequence, unless `endpoint` is False.        In that case, ``num + 1`` values are spaced over the        interval in log-space, of which all but the last (a sequence of        length `num`) are returned.    num : integer, optional        Number of samples to generate.  Default is 50.    endpoint : boolean, optional        If true, `stop` is the last sample. Otherwise, it is not included.        Default is True.    dtype : dtype        The type of the output array.  If `dtype` is not given, the data type        is inferred from `start` and `stop`. The inferred dtype will never be        an integer; `float` is chosen even if the arguments would produce an        array of integers.    axis : int, optional        The axis in the result to store the samples.  Relevant only if start        or stop are array-like.  By default (0), the samples will be along a        new axis inserted at the beginning. Use -1 to get an axis at the end.            .. versionadded:: 1.16.0
>>> np.geomspace(1, 1000, num=4)array([    1.,    10.,   100.,  1000.])>>> np.geomspace(1, 1000, num=3, endpoint=False)array([   1.,   10.,  100.])>>> np.geomspace(1, 1000, num=4, endpoint=False)array([   1.        ,    5.62341325,   31.6227766 ,  177.827941  ])>>> np.geomspace(1, 256, num=9)array([   1.,    2.,    4.,    8.,   16.,   32.,   64.,  128.,  256.])    #Note that the above may not produce exact integers:    >>> np.geomspace(1, 256, num=9, dtype=int)array([  1,   2,   4,   7,  16,  32,  63, 127, 256])>>> np.around(np.geomspace(1, 256, num=9)).astype(int)array([  1,   2,   4,   8,  16,  32,  64, 128, 256])    #Negative, decreasing, and complex inputs are allowed:    >>> np.geomspace(1000, 1, num=4)array([1000.,  100.,   10.,    1.])>>> np.geomspace(-1000, -1, num=4)array([-1000.,  -100.,   -10.,    -1.])>>> np.geomspace(1j, 1000j, num=4)  # Straight linearray([0.   +1.j, 0.  +10.j, 0. +100.j, 0.+1000.j])>>> np.geomspace(-1+0j, 1+0j, num=5)  # Circlearray([-1.00000000e+00+1.22464680e-16j, -7.07106781e-01+7.07106781e-01j,            6.12323400e-17+1.00000000e+00j,  7.07106781e-01+7.07106781e-01j,            1.00000000e+00+0.00000000e+00j])

10.1- 常量np.pi np.e np.nan np.inf 等

>>> np.pi3.141592653589793>>> np.e2.718281828459045>>> np.nannan>>> np.infinf>>> np.Infinf>>> np.Infinityinf>>> np.PINFinf>>> np.NINF-inf>>> np.PZERO0.0>>> np.NZERO-0.0

10.2- 常量数组 zeros() ones() empty()

>>> np.zeros((2,5))array([[0., 0., 0., 0., 0.],       [0., 0., 0., 0., 0.]])>>> np.zeros((2,5),dtype=int)array([[0, 0, 0, 0, 0],       [0, 0, 0, 0, 0]])>>> np.linspace(0, 0, 10, dtype=int).reshape((2,5))array([[0, 0, 0, 0, 0],       [0, 0, 0, 0, 0]])>>> >>> np.ones((3,4))array([[1., 1., 1., 1.],       [1., 1., 1., 1.],       [1., 1., 1., 1.]])>>> np.ones((3,4),dtype=int)array([[1, 1, 1, 1],       [1, 1, 1, 1],       [1, 1, 1, 1]])>>> np.linspace(1, 1, 12, dtype=int).reshape((3,4))array([[1, 1, 1, 1],       [1, 1, 1, 1],       [1, 1, 1, 1]])>>>>>> np.linspace(1, 1, 12, dtype=int).reshape((3,4))*3array([[3, 3, 3, 3],       [3, 3, 3, 3],       [3, 3, 3, 3]])>>> np.linspace(1, 1, 12, dtype=int).reshape((3,4))*np.piarray([[3.14159265, 3.14159265, 3.14159265, 3.14159265],       [3.14159265, 3.14159265, 3.14159265, 3.14159265],       [3.14159265, 3.14159265, 3.14159265, 3.14159265]])

10.3- 常量数组 zeros_like() ones_like() empty_like()

>>> arr = np.ones((3,4))>>> np.zeros_like(arr)array([[0., 0., 0., 0.],       [0., 0., 0., 0.],       [0., 0., 0., 0.]])

10.4- 单位矩阵 np.eye() 或 np.identity() 对角线为1,其余为0

>>> np.eye(4)array([[1., 0., 0., 0.],       [0., 1., 0., 0.],       [0., 0., 1., 0.],       [0., 0., 0., 1.]])>>> np.identity(4, dtype=int)array([[1, 0, 0, 0],       [0, 1, 0, 0],       [0, 0, 1, 0],       [0, 0, 0, 1]])

来源地址:https://blog.csdn.net/boysoft2002/article/details/131990717

阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     813人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     354人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     318人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     435人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     224人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯