文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

机器学习常见面试题有哪些

2023-06-03 16:12

关注

这篇文章主要介绍“机器学习常见面试题有哪些”,在日常操作中,相信很多人在机器学习常见面试题有哪些问题上存在疑惑,小编查阅了各式资料,整理出简单好用的操作方法,希望对大家解答”机器学习常见面试题有哪些”的疑惑有所帮助!接下来,请跟着小编一起来学习吧!

什么是偏差与方差?

泛化误差可以分解成偏差的平方加上方差加上噪声。偏差度量了学习算法的期望预测和真实结果的偏离程度,刻画了学习算法本身的拟合能力,方差度量了同样大小的训练集的变动所导致的学习性能的变化,刻画了数据扰动所造成的影响,噪声表达了当前任务上任何学习算法所能达到的期望泛化误差下界,刻画了问题本身的难度。偏差和方差一般称为bias和variance,一般训练程度越强,偏差越小,方差越大,泛化误差一般在中间有一个最小值,如果偏差较大,方差较小,此时一般称为欠拟合,而偏差较小,方差较大称为过拟合。

采用 EM 算法求解的模型有哪些,为什么不用牛顿法或梯度下降法?

用EM算法求解的模型一般有GMM或者协同过滤,k-means其实也属于EM。EM算法一定会收敛,但是可能收敛到局部最优。由于求和的项数将随着隐变量的数目指数上升,会给梯度计算带来麻烦。

SVM、LR、决策树的对比?

模型复杂度:SVM支持核函数,可处理线性非线性问题;LR模型简单,训练速度快,适合处理线性问题;决策树容易过拟合,需要进行剪枝损失函数:SVM hinge loss; LR L2正则化; adaboost 指数损失数据敏感度:SVM添加容忍度对outlier不敏感,只关心支持向量,且需要先做归一化; LR对远点敏感数据量:数据量大就用LR,数据量小且特征少就用SVM非线性核

GBDT 和随机森林的区别

随机森林采用的是bagging的思想,bagging又称为bootstrap aggreagation,通过在训练样本集中进行有放回的采样得到多个采样集,基于每个采样集训练出一个基学习器,再将基学习器结合。随机森林在对决策树进行bagging的基础上,在决策树的训练过程中引入了随机属性选择。传统决策树在选择划分属性的时候是在当前节点属性集合中选择最优属性,而随机森林则是对结点先随机选择包含k个属性的子集,再选择最有属性,k作为一个参数控制了随机性的引入程度。另外,GBDT训练是基于Boosting思想,每一迭代中根据错误更新样本权重,因此是串行生成的序列化方法,而随机森林是bagging的思想,因此是并行化方法。

xgboost怎么给特征评分?

在训练的过程中,通过Gini指数选择分离点的特征,一个特征被选中的次数越多,那么该特征评分越高。

1. # feature importance  
2. print(model.feature_importances_)  
3. # plot  
4. pyplot.bar(range(len(model.feature_importances_)), model.feature_importances_)  
5. pyplot.show()  
6. ==========  
7. # plot feature importance  
8. plot_importance(model)  
9. pyplot.show()  
# feature importance
print(model.feature_importances_)
# plot
pyplot.bar(range(len(model.feature_importances_)), model.feature_importances_)
pyplot.show()
==========
# plot feature importance
plot_importance(model)
pyplot.show()

什么是OOB?随机森林中OOB是如何计算的,它有什么优缺点?

bagging方法中Bootstrap每次约有1/3的样本不会出现在Bootstrap所采集的样本集合中,当然也就没有参加决策树的建立,把这1/3的数据称为袋外数据oob(out of bag),它可以用于取代测试集误差估计方法。袋外数据(oob)误差的计算方法如下:对于已经生成的随机森林,用袋外数据测试其性能,假设袋外数据总数为O,用这O个袋外数据作为输入,带进之前已经生成的随机森林分类器,分类器会给出O个数据相应的分类,因为这O条数据的类型是已知的,则用正确的分类与随机森林分类器的结果进行比较,统计随机森林分类器分类错误的数目,设为X,则袋外数据误差大小=X/O;这已经经过证明是无偏估计的,所以在随机森林算法中不需要再进行交叉验证或者单独的测试集来获取测试集误差的无偏估计。

什么是机器学习?

机器学习是为了应对系统程序设计,属于计算机科学类的学科,它能根据经验进行自动学习和提高。例如:一个由程序操纵的机器人,它能根据从传感器搜集到的数据,完成一系列的任务和工作。它能根据数据自动地学习应用程序。

机器学习与数据挖掘的区别

机器语言是指在没有明确的程序指令的情况下,给予计算机学习能力,使它能自主的学习、设计和扩展相关算法。数据挖掘则是一种从非结构化数据里面提取知识或者未知的、人们感兴趣的图片。在这个过程中应用了机器学习算法。

什么是机器学习的过度拟合现象

在机器学习中,当一个统计模型首先描述随机误差或噪声,而不是自身的基本关系时,过度拟合就会出现。当一个模型是过于复杂,过拟合通常容易被发现,因为相对于训练数据类型的数量,参数的数量过于五花八门。那么这个模型由于过度拟合而效果不佳。

过度拟合产生的原因

由于用于训练模型的标准并不等同于判断模型效率的标准,这导致了产生过度拟合的可能性。

如何避免过度拟合

当你使用较小的数据集进行机器学习时,容易产生过度拟合,因此使用较大的数据量能避免过度拟合现象。但是,当你不得不使用小型数据集进行建模时,可以使用被称为交叉验证的技术。在这种方法中数据集被分成两节,测试和训练数据集,测试数据集只测试模型,而在训练数据集中,数据点被用来建模。

在该技术中,一个模型通常是被给定有先验知识的数据集(训练数据集)进行训练,没有先验知识的数据集进行测试。交叉验证的思想是:在训练阶段,定义一个数据集用来测试模型。

什么是感应式的机器学习?

感应机器学习涉及由实践进行学习的过程,能从一组可观测到的例子的尝试推导出普遍性规则。

什么是机器学习的五个流行的算法?

a. 决策树

b. 神经网络(反向传播)

c. 概率网络

d.最邻近法

e. 支持向量机

机器学习有哪些不同的算法技术?

在机器学习不同类型的算法技术是:

在机器学习中,建立假设或者模型的三个阶段指的是什么?

a.建模

b.模型测试

c.模型应用。

什么是训练数据集和测试数据集?

在类似于机器学习的各个信息科学相关领域中,一组数据被用来发现潜在的预测关系,称为“训练数据集”。训练数据集是提供给学习者的案例,而试验数据集是用于测试由学习者提出的假设关系的准确度。

请列出机器学习的各种方法?

机器学习的各种方法如下:

什么是非监督学习的功能?

什么是监督学习的功能?

什么是算法独立的机器学习?

机器学习在基础数学领域独立于任何特定分类器或者学习算法,被称为算法独立的机器学习。

更多的机器学习相关教程也会继续更新!有相关学习需求的同学可以继续关注,希望这些总结对大家有帮助!有不同见解的伙伴,可以留言!

到此,关于“机器学习常见面试题有哪些”的学习就结束了,希望能够解决大家的疑惑。理论与实践的搭配能更好的帮助大家学习,快去试试吧!若想继续学习更多相关知识,请继续关注编程网网站,小编会继续努力为大家带来更多实用的文章!

阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     807人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     351人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     314人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     433人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     221人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯