文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

使用python把Excel中的数据在页面中可视化

2024-04-02 19:55

关注

一. 需求

最近我们数据可视化的老师让我们把广州历史房价中的房价数据可视化,然后给我们发了广州历史房价.xls,然后看了一下数据确实有点小多,反正复制粘贴是有点费劲的,所以就想借用python帮我把数据修改成我一键复制的模样。

二. 安装xlrd模块

pip install xlrd

通常pip都是带有的,我们在开发工具中import xlrd就可以啦。

下面是实现切割一年每个月份的方法

import xlrd
path = r'E:\数据分析\07广州历史房价.xls'
#sheetName是你这个excel文件中的表,如Sheet1(注意大小写问题)
sheetName = 'Sheet1'
data = xlrd.open_workbook(path)
table = data.sheet_by_name(sheetName)
 
# 行数
rowAmount = table.nrows
# 列数
colAmount = table.ncols
# 显示第n列中所有格中的内容
datas=[]
for rowIndex in range(1,rowAmount):
    datas.append(table.cell_value(rowIndex, 1))
 
datas.reverse()
index1=0
index2=12
time=2009
while index2<len(datas):
    print(str(time)+"年")
    time=time+1
    # print(str(index1)+"   "+str(index2))
    print(datas[index1:index2])
    index1=index2
    index2=index2+12
print(str(time)+"年")
print(datas[index1:index2-2])

得到的数据: 

三.  用echart在html中表现

在下面链接中找到要表现的样式:(记得加上echart.js)

Examples - Apache ECharts

ECharts, a powerful, interactive charting and visualization library for browser

https://echarts.apache.org/examples/zh/index.html

<!DOCTYPE html>
<html>
	<head>
		<meta charset="utf-8">
		<title>广州历史房价</title>
		<script src="echarts.js"></script>
	</head>
	<script>
	window.onload = function(){
		// 在<head>中写浮现窗口
		var a = echarts.init(document.getElementById("main"));
		var b =option = {
  title: {
    text: '广州历史房价',
	
  },
  tooltip: {
    trigger: 'axis'
  },
  legend: {
    data: ['2009年', '2010年', '2011年', '2012年', '2013年','2014年', '2015年', '2016年', '2017年', '2018年']
  },
  grid: {
    left: '3%',
    right: '4%',
    bottom: '3%',
    containLabel: true
  },
  toolbox: {
    feature: {
      saveAsImage: {}
    }
  },
  xAxis: {
    type: 'category',
    boundaryGap: false,
    data: ['一月', '二月', '三月', '四月', '五月', '六月', '七月','八月', '九月', '十月', '十一月','十二月']
  },
  yAxis: {
    type: 'value'
  },
  series: [
    {
      name: '2009年',
      type: 'line',
      stack: 'Total',
      data: [6991.0, 6963.0, 7305.0, 8051.0, 8191.0, 8168.0, 8431.0, 8620.0, 8927.0, 9113.0, 9318.0, 9718.0]
    },
    {
      name: '2010年',
      type: 'line',
      stack: 'Total',
      data: [9873.0, 10000.0, 10000.0, 10351.0, 10610.0, 10787.0, 10622.0, 10878.0, 11505.0, 12062.0, 12413.0, 12944.0]
    },
    {
      name: '2011年',
      type: 'line',
      stack: 'Total',
      data: [13535.0, 14114.0, 14680.0, 14998.0, 14977.0, 14938.0, 14855.0, 14654.0, 14547.0, 14521.0, 14677.0, 14762.0]
    },
    {
      name: '2012年',
      type: 'line',
      stack: 'Total',
      data: [14993.0, 15194.0, 15215.0, 15203.0, 15148.0, 15152.0, 15246.0, 15467.0, 15754.0, 15886.0, 16207.0, 16555.0]
    },
    {
      name: '2013年',
      type: 'line',
      stack: 'Total',
      data: [17003.0, 17423.0, 17665.0, 17651.0, 17304.0, 17515.0, 17759.0, 18293.0, 19011.0, 19445.0, 19589.0, 19208.0]
    },
    {
      name: '2014年',
      type: 'line',
      stack: 'Total',
      data: [18893.0, 18977.0, 19460.0, 19040.0, 18757.0, 18440.0, 17764.0, 17450.0, 17312.0, 17338.0, 18081.0, 18564.0]
    },    
	{
      name: '2015年',
      type: 'line',
      stack: 'Total',
      data: [18792.0, 18851.0, 19024.0, 19417.0, 19562.0, 19902.0, 20014.0, 19997.0, 19988.0, 19921.0, 19996.0, 20016.0]
    },
	{
	  name: '2016年',
	  type: 'line',
	  stack: 'Total',
	  data: [20623.0, 20643.0, 20811.0, 21133.0, 21107.0, 21144.0, 21264.0, 21553.0, 21720.0, 22242.0, 22590.0, 22926.0]
	},
	{
	  name: '2017年',
	  type: 'line',
	  stack: 'Total',
	  data: [23744.0, 24427.0, 25131.0, 25369.0, 26061.0, 27329.0, 28196.0, 28508.0, 28814.0, 28254.0, 28009.0, 28578.0]
	},
	{
	  name: '2018年',
	  type: 'line',
	  stack: 'Total',
	  data: [28602.0, 29683.0, 30413.0, 31044.0, 31472.0, 32021.0, 32670.0, 33289.0, 33455.0, 33197.0]
	},
  ]
};
 
 
					a.setOption(b);
				}
	</script>
	<body> <!-- 在<body>处完善窗口尺寸 -->
		<div id="main" style="width: 1100px;height: 800px;"></div>
	</body>
</html>

四.  效果 

总结

到此这篇关于使用python把Excel中数据在页面中可视化的文章就介绍到这了,更多相关python Excel数据可视化内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     813人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     354人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     318人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     435人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     224人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯