文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

OpenCV半小时掌握基本操作之分水岭算法

2024-04-02 19:55

关注

【OpenCV】⚠️高手勿入! 半小时学会基本操作 ⚠️ 分水岭算法

概述

OpenCV 是一个跨平台的计算机视觉库, 支持多语言, 功能强大. 今天小白就带大家一起携手走进 OpenCV 的世界.

在这里插入图片描述

分水岭算法

分水岭算法 (Watershed Algorithm) 是一种图像区域分割算法. 在分割的过程中, 分水岭算法会把跟临近像素间的相似性作为重要的根据.

在这里插入图片描述

分水岭分割流程:

  1. 读取图片
  2. 转换成灰度图
  3. 二值化
  4. 距离变换
  5. 寻找种子
  6. 生成 Marker
  7. 分水岭变换

距离变换

距离变换 (Distance Transform)通过计算图像中非零像素点到最近像素的距离, 实现了像素与图像区域的距离变换.

在这里插入图片描述

连通域

连通域 (Connected Components) 指的是图像中具有相同像素且位置相邻的前景像素点组成的图像区域.

在这里插入图片描述

格式:


cv2.connectedComponents(image, labels=None, connectivity=None, ltype=None)

参数:

分水岭

算法会根据 markers 传入的轮廓作为种子, 对图像上其他的像素点根据分水岭算法规则进行判断, 并对每个像素点的区域归属进行划定. 区域之间的分界处的值被赋值为 -1.

在这里插入图片描述

格式:


cv2.watershed(image, markers)

参数:

代码实战


import numpy as np
import cv2
from matplotlib import pyplot as plt


def watershed(image):
    """分水岭算法"""

    # 卷积核
    kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (3, 3))

    # 均值迁移滤波
    blur = cv2.pyrMeanShiftFiltering(image, 10, 100)

    # 转换成灰度图
    image_gray = cv2.cvtColor(blur, cv2.COLOR_BGR2GRAY)

    # 二值化
    ret1, thresh1 = cv2.threshold(image_gray, 0, 255, cv2.THRESH_OTSU)

    # 开运算
    open = cv2.morphologyEx(thresh1, cv2.MORPH_OPEN, kernel, iterations=2)

    # 膨胀
    dilate = cv2.dilate(open, kernel, iterations=3)

    # 距离变换
    dist = cv2.distanceTransform(dilate, cv2.DIST_L2, 3)
    dist = cv2.normalize(dist, 0, 1.0, cv2.NORM_MINMAX)
    print(dist.max())

    # 二值化
    ret2, thresh2 = cv2.threshold(dist, dist.max() * 0.6, 255, cv2.THRESH_BINARY)
    thresh2 = np.uint8(thresh2)

    # 分水岭计算
    unknown = cv2.subtract(dilate, thresh2)
    ret3, component = cv2.connectedComponents(thresh2)
    print(ret3)

    # 分水岭计算
    markers = component + 1
    markers[unknown == 255] = 0
    result = cv2.watershed(image, markers=markers)
    image[result == -1] = [0, 0, 255]

    # 图片展示
    image_show((image, blur, image_gray, thresh1, open, dilate), (dist, thresh2, unknown, component, markers, image))

    return image


def image_show(graph1, graph2):
    """绘制图片"""

    # 图像1
    original, blur, gray, binary1, open, dilate = graph1

    # 图像2
    dist, binary2, unknown, component, markers, result = graph2

    f, ax = plt.subplots(3, 2, figsize=(12, 16))

    # 绘制子图
    ax[0, 0].imshow(cv2.cvtColor(original, cv2.COLOR_BGR2RGB))
    ax[0, 1].imshow(cv2.cvtColor(blur, cv2.COLOR_BGR2RGB))
    ax[1, 0].imshow(gray, "gray")
    ax[1, 1].imshow(binary1, "gray")
    ax[2, 0].imshow(open, "gray")
    ax[2, 1].imshow(dilate, "gray")

    # 
    ax[0, 0].set_title("original")
    ax[0, 1].set_title("image blur")
    ax[1, 0].set_title("image gray")
    ax[1, 1].set_title("image binary1")
    ax[2, 0].set_title("image open")
    ax[2, 1].set_title("image dilate")

    plt.show()

    f, ax = plt.subplots(3, 2, figsize=(12, 16))

    # 绘制子图
    ax[0, 0].imshow(dist, "gray")
    ax[0, 1].imshow(binary2, "gray")
    ax[1, 0].imshow(unknown, "gray")
    ax[1, 1].imshow(component, "gray")
    ax[2, 0].imshow(markers, "gray")
    ax[2, 1].imshow(cv2.cvtColor(result, cv2.COLOR_BGR2RGB))

    # 
    ax[0, 0].set_title("image distance")
    ax[0, 1].set_title("image binary2")
    ax[1, 0].set_title("image unknown")
    ax[1, 1].set_title("image component")
    ax[2, 0].set_title("image markers")
    ax[2, 1].set_title("result")

    plt.show()


if __name__ == "__main__":
    # 读取图片
    image = cv2.imread("coin.jpg")

    # 分水岭算法
    result = watershed(image)

    # 保存结果
    cv2.imwrite("result.jpg", result)

输出结果:

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

到此这篇关于OpenCV半小时掌握基本操作之分水岭算法的文章就介绍到这了,更多相关OpenCV分水岭算法内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     813人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     354人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     318人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     435人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     224人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯