文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

利用Python实现生成颜色表(colorchart)

2023-05-12 15:00

关注

前言

在做色彩相关的算法分析时候,经常需要使用规则的颜色表来进行辅助。下面用python(numpy和opencv)来生成颜色表并保存为图片。

有两种类型:

长的样子分别如下:

格子颜色表

这里需要注意,当划分的颜色数量比较少时,最好把一个颜色像素扩展成为一个格子,不然的话整个图看起来就太小了。

# -*- coding: utf-8 -*-
import cv2
import numpy as np


def generate_color_chart(block_num=18,
                         block_columns=6,
                         grid_width=32,
                         grid_height=None):
    """
    Generate color chart by uniformly distributed color indexes, only support
    8 bit (uint8).

    Parameters
    ----------
    block_num: Block number of color chart, also the number of color indexes.
    block_columns: Column number of color chart. Row number is computed by
        block_num / block_columns
    grid_width: Width of color grid
    grid_height: Height of color grid. If not set, it will equal to grid_width.
    """
    color_index = np.linspace(0, 255, block_num)
    color_index = np.uint8(np.round(color_index))

    if grid_height is None:
        grid_height = grid_width

    # compute sizes
    block_rows = np.int_(np.ceil(block_num / block_columns))
    block_width = grid_width * block_num
    block_height = grid_height * block_num
    width = block_width * block_columns
    height = block_height * block_rows
    result = np.zeros((height, width, 3), dtype=np.uint8)

    # compute red-green block, (blue will be combined afterward)
    red_block, green_block = np.meshgrid(color_index, color_index)
    red_block = expand_pixel_to_grid(red_block, grid_width, grid_height)
    green_block = expand_pixel_to_grid(green_block, grid_width, grid_height)
    rg_block = np.concatenate([red_block, green_block], axis=2)

    # combine blue channel
    for i in range(block_num):
        blue = np.ones_like(rg_block[..., 0], dtype=np.uint8) * color_index[i]
        color_block = np.concatenate([rg_block, blue[..., np.newaxis]], axis=2)
        # compute block index
        block_row = i // block_columns
        block_column = i % block_columns
        xmin = block_column * block_width
        ymin = block_row * block_height
        xmax = xmin + block_width
        ymax = ymin + block_height
        result[ymin:ymax, xmin:xmax, :] = color_block

    result = result[..., ::-1]  # convert from rgb to bgr
    return result


def expand_pixel_to_grid(matrix, grid_width, grid_height):
    """
    Expand a pixel to a grid. Inside the grid, every pixel have the same value
    as the source pixel.

    Parameters
    ----------
    matrix: 2D numpy array
    grid_width: width of grid
    grid_height: height of grid
    """
    height, width = matrix.shape[:2]
    new_heigt = height * grid_height
    new_width = width * grid_width
    repeat_num = grid_width * grid_height

    matrix = np.expand_dims(matrix, axis=2).repeat(repeat_num, axis=2)
    matrix = np.reshape(matrix, (height, width, grid_height, grid_width))
    # put `height` and `grid_height` axes together;
    # put `width` and `grid_width` axes together.
    matrix = np.transpose(matrix, (0, 2, 1, 3))
    matrix = np.reshape(matrix, (new_heigt, new_width, 1))
    return matrix


if __name__ == '__main__':
    color_chart16 = generate_color_chart(block_num=16,
                                         grid_width=32,
                                         block_columns=4)
    color_chart18 = generate_color_chart(block_num=18,
                                         grid_width=32,
                                         block_columns=6)
    color_chart36 = generate_color_chart(block_num=36,
                                         grid_width=16,
                                         block_columns=6)
    color_chart52 = generate_color_chart(block_num=52,
                                         grid_width=8,
                                         block_columns=13)
    color_chart256 = generate_color_chart(block_num=256,
                                          grid_width=1,
                                          block_columns=16)

    cv2.imwrite('color_chart16.png', color_chart16)
    cv2.imwrite('color_chart18.png', color_chart18)
    cv2.imwrite('color_chart36.png', color_chart36)
    cv2.imwrite('color_chart52.png', color_chart52)
    cv2.imwrite('color_chart256.png', color_chart256)

渐变色带

# -*- coding: utf-8 -*-
import cv2
import numpy as np


def generate_color_band(left_colors, right_colors, grade=256, height=32):
    """
    Generate color bands by uniformly changing from left colors to right
    colors. Note that there might be multiple bands.

    Parameters
    ----------
    left_colors: Left colors of the color bands.
    right_colors: Right colors of the color bands.
    grade: how many colors are contained in one color band.
    height: height of one color band.
    """
    # check and process color parameters, which should be 2D list
    # after processing
    if not isinstance(left_colors, (tuple, list)):
        left_colors = [left_colors]
    if not isinstance(right_colors, (tuple, list)):
        right_colors = [right_colors]

    if not isinstance(left_colors[0], (tuple, list)):
        left_colors = [left_colors]
    if not isinstance(right_colors[0], (tuple, list)):
        right_colors = [right_colors]

    # initialize channel, and all other colors should have the same channel
    channel = len(left_colors[0])

    band_num = len(left_colors)
    result = []
    for i in range(band_num):
        left_color = left_colors[i]
        right_color = right_colors[i]
        if len(left_color) != channel or len(right_color) != channel:
            raise ValueError("All colors should have same channel number")

        color_band = np.linspace(left_color, right_color, grade)
        color_band = np.expand_dims(color_band, axis=0)
        color_band = np.repeat(color_band, repeats=height, axis=0)
        color_band = np.clip(np.round(color_band), 0, 255).astype(np.uint8)
        result.append(color_band)
    result = np.concatenate(result, axis=0)
    result = np.squeeze(result)
    return result


if __name__ == '__main__':
    black = [0, 0, 0]
    white = [255, 255, 255]
    red = [0, 0, 255]
    green = [0, 255, 0]
    blue = [255, 0, 0]

    gray_band = generate_color_band([[0], [255]], [[255], [0]])
    color_band8 = generate_color_band(
        [black, white, red, green, blue, black, black, black],
        [white, black, white, white, white, red, green, blue]
    )

    cv2.imwrite('gray_band.png', gray_band)
    cv2.imwrite('color_band8.png', color_band8)

到此这篇关于利用Python实现生成颜色表(color chart)的文章就介绍到这了,更多相关Python颜色表内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     813人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     354人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     318人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     435人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     224人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯