文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

R语言朴素贝叶斯技术怎么使用

2023-06-19 11:00

关注

本篇内容主要讲解“R语言朴素贝叶斯技术怎么使用”,感兴趣的朋友不妨来看看。本文介绍的方法操作简单快捷,实用性强。下面就让小编来带大家学习“R语言朴素贝叶斯技术怎么使用”吧!

安装package:

> install.packages("e1071")

导入e1071:

> library(e1071)

找一个数据集:

> data(iris)> iris    Sepal.Length Sepal.Width Petal.Length Petal.Width    Species1            5.1         3.5          1.4         0.2     setosa2            4.9         3.0          1.4         0.2     setosa3            4.7         3.2          1.3         0.2     setosa4            4.6         3.1          1.5         0.2     setosa5            5.0         3.6          1.4         0.2     setosa6            5.4         3.9          1.7         0.4     setosa7            4.6         3.4          1.4         0.3     setosa8            5.0         3.4          1.5         0.2     setosa9            4.4         2.9          1.4         0.2     setosa10           4.9         3.1          1.5         0.1     setosa11           5.4         3.7          1.5         0.2     setosa12           4.8         3.4          1.6         0.2     setosa13           4.8         3.0          1.4         0.1     setosa14           4.3         3.0          1.1         0.1     setosa15           5.8         4.0          1.2         0.2     setosa16           5.7         4.4          1.5         0.4     setosa17           5.4         3.9          1.3         0.4     setosa18           5.1         3.5          1.4         0.3     setosa19           5.7         3.8          1.7         0.3     setosa20           5.1         3.8          1.5         0.3     setosa21           5.4         3.4          1.7         0.2     setosa22           5.1         3.7          1.5         0.4     setosa23           4.6         3.6          1.0         0.2     setosa24           5.1         3.3          1.7         0.5     setosa25           4.8         3.4          1.9         0.2     setosa26           5.0         3.0          1.6         0.2     setosa27           5.0         3.4          1.6         0.4     setosa28           5.2         3.5          1.5         0.2     setosa29           5.2         3.4          1.4         0.2     setosa30           4.7         3.2          1.6         0.2     setosa31           4.8         3.1          1.6         0.2     setosa32           5.4         3.4          1.5         0.4     setosa33           5.2         4.1          1.5         0.1     setosa34           5.5         4.2          1.4         0.2     setosa35           4.9         3.1          1.5         0.2     setosa36           5.0         3.2          1.2         0.2     setosa37           5.5         3.5          1.3         0.2     setosa38           4.9         3.6          1.4         0.1     setosa39           4.4         3.0          1.3         0.2     setosa40           5.1         3.4          1.5         0.2     setosa41           5.0         3.5          1.3         0.3     setosa42           4.5         2.3          1.3         0.3     setosa43           4.4         3.2          1.3         0.2     setosa44           5.0         3.5          1.6         0.6     setosa45           5.1         3.8          1.9         0.4     setosa46           4.8         3.0          1.4         0.3     setosa47           5.1         3.8          1.6         0.2     setosa48           4.6         3.2          1.4         0.2     setosa49           5.3         3.7          1.5         0.2     setosa50           5.0         3.3          1.4         0.2     setosa51           7.0         3.2          4.7         1.4 versicolor52           6.4         3.2          4.5         1.5 versicolor53           6.9         3.1          4.9         1.5 versicolor54           5.5         2.3          4.0         1.3 versicolor55           6.5         2.8          4.6         1.5 versicolor56           5.7         2.8          4.5         1.3 versicolor57           6.3         3.3          4.7         1.6 versicolor58           4.9         2.4          3.3         1.0 versicolor59           6.6         2.9          4.6         1.3 versicolor60           5.2         2.7          3.9         1.4 versicolor61           5.0         2.0          3.5         1.0 versicolor62           5.9         3.0          4.2         1.5 versicolor63           6.0         2.2          4.0         1.0 versicolor64           6.1         2.9          4.7         1.4 versicolor65           5.6         2.9          3.6         1.3 versicolor66           6.7         3.1          4.4         1.4 versicolor67           5.6         3.0          4.5         1.5 versicolor68           5.8         2.7          4.1         1.0 versicolor69           6.2         2.2          4.5         1.5 versicolor70           5.6         2.5          3.9         1.1 versicolor71           5.9         3.2          4.8         1.8 versicolor72           6.1         2.8          4.0         1.3 versicolor73           6.3         2.5          4.9         1.5 versicolor74           6.1         2.8          4.7         1.2 versicolor75           6.4         2.9          4.3         1.3 versicolor76           6.6         3.0          4.4         1.4 versicolor77           6.8         2.8          4.8         1.4 versicolor78           6.7         3.0          5.0         1.7 versicolor79           6.0         2.9          4.5         1.5 versicolor80           5.7         2.6          3.5         1.0 versicolor81           5.5         2.4          3.8         1.1 versicolor82           5.5         2.4          3.7         1.0 versicolor83           5.8         2.7          3.9         1.2 versicolor84           6.0         2.7          5.1         1.6 versicolor85           5.4         3.0          4.5         1.5 versicolor86           6.0         3.4          4.5         1.6 versicolor87           6.7         3.1          4.7         1.5 versicolor88           6.3         2.3          4.4         1.3 versicolor89           5.6         3.0          4.1         1.3 versicolor90           5.5         2.5          4.0         1.3 versicolor91           5.5         2.6          4.4         1.2 versicolor92           6.1         3.0          4.6         1.4 versicolor93           5.8         2.6          4.0         1.2 versicolor94           5.0         2.3          3.3         1.0 versicolor95           5.6         2.7          4.2         1.3 versicolor96           5.7         3.0          4.2         1.2 versicolor97           5.7         2.9          4.2         1.3 versicolor98           6.2         2.9          4.3         1.3 versicolor99           5.1         2.5          3.0         1.1 versicolor100          5.7         2.8          4.1         1.3 versicolor101          6.3         3.3          6.0         2.5  virginica102          5.8         2.7          5.1         1.9  virginica103          7.1         3.0          5.9         2.1  virginica104          6.3         2.9          5.6         1.8  virginica105          6.5         3.0          5.8         2.2  virginica106          7.6         3.0          6.6         2.1  virginica107          4.9         2.5          4.5         1.7  virginica108          7.3         2.9          6.3         1.8  virginica109          6.7         2.5          5.8         1.8  virginica110          7.2         3.6          6.1         2.5  virginica111          6.5         3.2          5.1         2.0  virginica112          6.4         2.7          5.3         1.9  virginica113          6.8         3.0          5.5         2.1  virginica114          5.7         2.5          5.0         2.0  virginica115          5.8         2.8          5.1         2.4  virginica116          6.4         3.2          5.3         2.3  virginica117          6.5         3.0          5.5         1.8  virginica118          7.7         3.8          6.7         2.2  virginica119          7.7         2.6          6.9         2.3  virginica120          6.0         2.2          5.0         1.5  virginica121          6.9         3.2          5.7         2.3  virginica122          5.6         2.8          4.9         2.0  virginica123          7.7         2.8          6.7         2.0  virginica124          6.3         2.7          4.9         1.8  virginica125          6.7         3.3          5.7         2.1  virginica126          7.2         3.2          6.0         1.8  virginica127          6.2         2.8          4.8         1.8  virginica128          6.1         3.0          4.9         1.8  virginica129          6.4         2.8          5.6         2.1  virginica130          7.2         3.0          5.8         1.6  virginica131          7.4         2.8          6.1         1.9  virginica132          7.9         3.8          6.4         2.0  virginica133          6.4         2.8          5.6         2.2  virginica134          6.3         2.8          5.1         1.5  virginica135          6.1         2.6          5.6         1.4  virginica136          7.7         3.0          6.1         2.3  virginica137          6.3         3.4          5.6         2.4  virginica138          6.4         3.1          5.5         1.8  virginica139          6.0         3.0          4.8         1.8  virginica140          6.9         3.1          5.4         2.1  virginica141          6.7         3.1          5.6         2.4  virginica142          6.9         3.1          5.1         2.3  virginica143          5.8         2.7          5.1         1.9  virginica144          6.8         3.2          5.9         2.3  virginica145          6.7         3.3          5.7         2.5  virginica146          6.7         3.0          5.2         2.3  virginica147          6.3         2.5          5.0         1.9  virginica148          6.5         3.0          5.2         2.0  virginica149          6.2         3.4          5.4         2.3  virginica150          5.9         3.0          5.1         1.8  virginica



Sepal意思是“花萼 ”,Petal意思是“ 花瓣”。很明显,前四列是花萼和花瓣的特征,第五列代表相应的分类。我们可以用这个数据集进行贝叶斯训练。

先看一下,对这个数据集summary的结果:

> summary(iris)  Sepal.Length    Sepal.Width     Petal.Length    Petal.Width          Species   Min.   :4.300   Min.   :2.000   Min.   :1.000   Min.   :0.100   setosa    :50   1st Qu.:5.100   1st Qu.:2.800   1st Qu.:1.600   1st Qu.:0.300   versicolor:50   Median :5.800   Median :3.000   Median :4.350   Median :1.300   virginica :50   Mean   :5.843   Mean   :3.057   Mean   :3.758   Mean   :1.199                   3rd Qu.:6.400   3rd Qu.:3.300   3rd Qu.:5.100   3rd Qu.:1.800                   Max.   :7.900   Max.   :4.400   Max.   :6.900   Max.   :2.500



训练并查看训练结果:

> classifier<-naiveBayes(iris[,1:4], iris[,5]) > classifierNaive Bayes Classifier for Discrete PredictorsCall:naiveBayes.default(x = iris[, 1:4], y = iris[, 5])A-priori probabilities:iris[, 5]    setosa versicolor  virginica  0.3333333  0.3333333  0.3333333 Conditional probabilities:            Sepal.Lengthiris[, 5]     [,1]      [,2]  setosa     5.006 0.3524897  versicolor 5.936 0.5161711  virginica  6.588 0.6358796            Sepal.Widthiris[, 5]     [,1]      [,2]  setosa     3.428 0.3790644  versicolor 2.770 0.3137983  virginica  2.974 0.3224966            Petal.Lengthiris[, 5]     [,1]      [,2]  setosa     1.462 0.1736640  versicolor 4.260 0.4699110  virginica  5.552 0.5518947            Petal.Widthiris[, 5]     [,1]      [,2]  setosa     0.246 0.1053856  versicolor 1.326 0.1977527  virginica  2.026 0.2746501> classifier$aprioriiris[, 5]    setosa versicolor  virginica         50         50         50 > classifier$tables$Sepal.Length            Sepal.Lengthiris[, 5]     [,1]      [,2]  setosa     5.006 0.3524897  versicolor 5.936 0.5161711  virginica  6.588 0.6358796$Sepal.Width            Sepal.Widthiris[, 5]     [,1]      [,2]  setosa     3.428 0.3790644  versicolor 2.770 0.3137983  virginica  2.974 0.3224966$Petal.Length            Petal.Lengthiris[, 5]     [,1]      [,2]  setosa     1.462 0.1736640  versicolor 4.260 0.4699110  virginica  5.552 0.5518947$Petal.Width            Petal.Widthiris[, 5]     [,1]      [,2]  setosa     0.246 0.1053856  versicolor 1.326 0.1977527  virginica  2.026 0.2746501



classifier中:

A-priori probabilities:iris[, 5]    setosa versicolor  virginica  0.3333333  0.3333333  0.3333333

很好理解,就是类别的先验概率。
而:

$Petal.Width            Petal.Widthiris[, 5]     [,1]      [,2]  setosa     0.246 0.1053856  versicolor 1.326 0.1977527  virginica  2.026 0.2746501

是特征Petal.Width的条件概率,在这个贝叶斯实现中,特征是数值型数据(而且还还有小数部分),这里假设概率密度符合高斯分布。比如对于特征Petal.Width,其属于setosa的概率符合mean为0.246,标准方差为0.1053856的高斯分布。



预测:
预测iris数据集中的第一个数据:

> predict(classifier, iris[1, -5])[1] setosaLevels: setosa versicolor virginica

iris[1,-5]表示第一行的前4列。

看一下该分类器的效果:

> table(predict(classifier, iris[,-5]), iris[,5], dnn=list('predicted','actual'))            actualpredicted    setosa versicolor virginica  setosa         50          0         0  versicolor      0         47         3  virginica       0          3        47

分类效果还是不错的。

自己构造一个新的数据并预测:

> new_data = data.frame(Sepal.Length=7, Sepal.Width=3, Petal.Length=6, Petal.Width=2)> predict(classifier, new_data)[1] virginicaLevels: setosa versicolor virginica

如果少一个特征(只有三个特征):

> new_data = data.frame(Sepal.Length=7, Sepal.Width=3, Petal.Length=6)> predict(classifier, new_data)[1] virginicaLevels: setosa versicolor virginica




下面看一下,这个库如何处理标称型特征:

数据如下:

> model = c("H", "H", "H", "H", "T", "T", "T", "T")> place = c("B", "B", "N", "N", "B", "B", "N", "N")> repairs = c("Y", "N", "Y", "N", "Y", "N", "Y", "N")> dataset = data.frame(model, place, repairs)> dataset  model place repairs1     H     B       Y2     H     B       N3     H     N       Y4     H     N       N5     T     B       Y6     T     B       N7     T     N       Y8     T     N       N



贝叶斯之:

> classifier<-naiveBayes(dataset[,1:2], dataset[,3]) > classifierNaive Bayes Classifier for Discrete PredictorsCall:naiveBayes.default(x = dataset[, 1:2], y = dataset[, 3])A-priori probabilities:dataset[, 3]  N   Y 0.5 0.5 Conditional probabilities:            modeldataset[, 3]   H   T           N 0.5 0.5           Y 0.5 0.5            placedataset[, 3]   B   N           N 0.5 0.5           Y 0.5 0.5



好了,预测一下:

> new_data = data.frame(model="H", place="B")> predict(classifier, new_data)[1] NLevels: N Y



perfect!


补充一下,如果某个数据缺少某些特征:

可以用NA代替该特征:

> model = c("H", "H", "H", "H", "T", "T", "T", "T")> place = c("B", "B", "N", "N", "B", "B", NA, NA)> repairs = c("Y", "N", "Y", "N", "Y", "N", "Y", "N")> dataset = data.frame(model, place, repairs)> dataset  model place repairs1     H     B       Y2     H     B       N3     H     N       Y4     H     N       N5     T     B       Y6     T     B       N7     T  <NA>       Y8     T  <NA>       N> classifier<-naiveBayes(dataset[,1:2], dataset[,3]) > classifierNaive Bayes Classifier for Discrete PredictorsCall:naiveBayes.default(x = dataset[, 1:2], y = dataset[, 3])A-priori probabilities:dataset[, 3]  N   Y 0.5 0.5 Conditional probabilities:            modeldataset[, 3]   H   T           N 0.5 0.5           Y 0.5 0.5            placedataset[, 3]         B         N           N 0.6666667 0.3333333           Y 0.6666667 0.3333333

到此,相信大家对“R语言朴素贝叶斯技术怎么使用”有了更深的了解,不妨来实际操作一番吧!这里是编程网网站,更多相关内容可以进入相关频道进行查询,关注我们,继续学习!

阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     813人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     354人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     318人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     435人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     224人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯