前言
在 Java 语言中解决线程不安全的问题通常有几种手段:
- 使用锁(使用 synchronized 或 Lock);
- 使用线程安全的容器(底层还是通过锁机制来保证安全)。
- 使用 ThreadLocal。
锁的实现方案是在多线程写入全局变量时,通过排队一个一个来写入全局变量,从而就可以避免线程不安全的问题了。比如当我们使用线程不安全的 SimpleDateFormat 对时间进行格式化时,如果使用锁来解决线程不安全的问题,实现的流程就是这样的:
从上述图片可以看出,通过加锁的方式虽然可以解决线程不安全的问题,但同时带来了新的问题,使用锁时线程需要排队执行,因此会带来一定的性能开销。
然而,如果使用的是 ThreadLocal 的方式,则是给每个线程创建一个 SimpleDateFormat 对象,这样就可以避免排队执行的问题了,它的实现流程如下图所示:
创建 SimpleDateFormat 也会消耗一定的时间和空间,如果线程复用 SimpleDateFormat 的频率比较高的情况下,使用 ThreadLocal 的优势比较大,反之则可以考虑使用锁。
然而,在我们使用 ThreadLocal 的过程中,很容易就会出现内存溢出的问题,如下面的这个事例。
什么是内存溢出?
内存溢出(Memory Overflow),指的是在程序运行过程中,申请的内存资源不再被使用,但没有被正确释放,导致占用的内存不断增加,最终耗尽系统的可用内存。当程序尝试分配更多的内存空间时,由于内存不足,会抛出 OutOfMemoryError 异常,导致程序终止或崩溃的现象就叫做内存溢出。
内存溢出代码演示
在开始演示 ThreadLocal 内存溢出的问题之前,我们先使用“-Xmx50m”的参数来设置一下 Idea,它表示将程序运行的最大内存设置为 50m,如果程序的运行超过这个值就会出现内存溢出的问题,设置方法如下:
设置后的最终效果这样的:
PS:因为我使用的 Idea 是社区版,所以可能和你的界面不一样,你只需要点击“Edit Configurations...”找到“VM options”选项,设置上“-Xmx50m”参数就可以了。
配置完 Idea 之后,接下来我们来实现一下业务代码。在代码中我们会创建一个大对象,这个对象中会有一个 10m 大的数组,然后我们将这个大对象存储在 ThreadLocal 中,再使用线程池执行大于 5 次添加任务,因为设置了最大运行内存是 50m,所以理想的情况是执行 5 次添加操作之后,就会出现内存溢出的问题,实现代码如下:
import java.util.concurrent.LinkedBlockingQueue;
import java.util.concurrent.ThreadPoolExecutor;
import java.util.concurrent.TimeUnit;
publicclass ThreadLocalOOMExample {
staticclass MyTask {
// 创建一个 10m 的数组(单位转换是 1M -> 1024KB -> 1024*1024B)
privatebyte[] bytes = newbyte[10 * 1024 * 1024];
}
// 定义 ThreadLocal
privatestatic ThreadLocal taskThreadLocal = new ThreadLocal<>();
// 主测试代码
public static void main(String[] args) throws InterruptedException {
// 创建线程池
ThreadPoolExecutor threadPoolExecutor =
new ThreadPoolExecutor(5, 5, 60,
TimeUnit.SECONDS, new LinkedBlockingQueue<>(100));
// 执行 10 次调用
for (int i = 0; i < 10; i++) {
// 执行任务
executeTask(threadPoolExecutor);
Thread.sleep(1000);
}
}
private static void executeTask(ThreadPoolExecutor threadPoolExecutor) {
// 执行任务
threadPoolExecutor.execute(new Runnable() {
@Override
public void run() {
System.out.println("创建对象");
// 创建对象(10M)
MyTask myTask = new MyTask();
// 存储 ThreadLocal
taskThreadLocal.set(myTask);
// 将对象设置为 null,表示此对象不在使用了
myTask = null;
}
});
}
}
以上程序的执行结果如下:
从上述图片可看出,当程序执行到第 5 次添加对象时就出现内存溢出的问题了,这是因为设置了最大的运行内存是 50m,每次循环会占用 10m 的内存,加上程序启动会占用一定的内存,因此在执行到第 5 次添加任务时,就会出现内存溢出的问题。
原因分析
内存溢出的问题和解决方案比较简单,重点在于“原因分析”,我们要通过内存溢出的问题搞清楚,为什么 ThreadLocal 会这样?是什么原因导致了内存溢出?
要搞清楚这个问题(内存溢出的问题),我们需要从 ThreadLocal 源码入手,所以我们首先打开 set 方法的源码(在示例中使用到了 set 方法),如下所示:
public void set(T value) {
// 得到当前线程
Thread t = Thread.currentThread();
// 根据线程获取到 ThreadMap 变量
ThreadLocalMap map = getMap(t);
if (map != null)
map.set(this, value); // 将内容存储到 map 中
else
createMap(t, value); // 创建 map 并将值存储到 map 中
}
从上述代码我们可以看出 Thread、ThreadLocalMap 和 set 方法之间的关系:每个线程 Thread 都拥有一个数据存储容器 ThreadLocalMap,当执行 ThreadLocal.set 方法执行时,会将要存储的值放到 ThreadLocalMap 容器中,所以接下来我们再看一下 ThreadLocalMap 的源码:
staticclass ThreadLocalMap {
// 实际存储数据的数组
private Entry[] table;
// 存数据的方法
private void set(ThreadLocal> key, Object value) {
Entry[] tab = table;
int len = tab.length;
int i = key.threadLocalHashCode & (len-1);
for (Entry e = tab[i];
e != null;
e = tab[i = nextIndex(i, len)]) {
ThreadLocal> k = e.get();
// 如果有对应的 key 直接更新 value 值
if (k == key) {
e.value = value;
return;
}
// 发现空位插入 value
if (k == null) {
replaceStaleEntry(key, value, i);
return;
}
}
// 新建一个 Entry 插入数组中
tab[i] = new Entry(key, value);
int sz = ++size;
// 判断是否需要进行扩容
if (!cleanSomeSlots(i, sz) && sz >= threshold)
rehash();
}
// ... 忽略其他源码
}
从上述源码我们可以看出:ThreadMap 中有一个 Entry[] 数组用来存储所有的数据,而 Entry 是一个包含 key 和 value 的键值对,其中 key 为 ThreadLocal 本身,而 value 则是要存储在 ThreadLocal 中的值。
根据上面的内容,我们可以得出 ThreadLocal 相关对象的关系图,如下所示:
也就是说它们之间的引用关系是这样的:Thread -> ThreadLocalMap -> Entry -> Key,Value,因此当我们使用线程池来存储对象时,因为线程池有很长的生命周期,所以线程池会一直持有 value 值,那么垃圾回收器就无法回收 value,所以就会导致内存一直被占用,从而导致内存溢出问题的发生。
解决方案
ThreadLocal 内存溢出的解决方案很简单,我们只需要在使用完 ThreadLocal 之后,执行 remove 方法就可以避免内存溢出问题的发生了,比如以下代码:
import java.util.concurrent.LinkedBlockingQueue;
import java.util.concurrent.ThreadPoolExecutor;
import java.util.concurrent.TimeUnit;
publicclass App {
staticclass MyTask {
// 创建一个 10m 的数组(单位转换是 1M -> 1024KB -> 1024*1024B)
privatebyte[] bytes = newbyte[10 * 1024 * 1024];
}
// 定义 ThreadLocal
privatestatic ThreadLocal taskThreadLocal = new ThreadLocal<>();
// 测试代码
public static void main(String[] args) throws InterruptedException {
// 创建线程池
ThreadPoolExecutor threadPoolExecutor =
new ThreadPoolExecutor(5, 5, 60,
TimeUnit.SECONDS, new LinkedBlockingQueue<>(100));
// 执行 n 次调用
for (int i = 0; i < 10; i++) {
// 执行任务
executeTask(threadPoolExecutor);
Thread.sleep(1000);
}
}
private static void executeTask(ThreadPoolExecutor threadPoolExecutor) {
// 执行任务
threadPoolExecutor.execute(new Runnable() {
@Override
public void run() {
System.out.println("创建对象");
try {
// 创建对象(10M)
MyTask myTask = new MyTask();
// 存储 ThreadLocal
taskThreadLocal.set(myTask);
// 其他业务代码...
} finally {
// 释放内存
taskThreadLocal.remove();
}
}
});
}
}
以上程序的执行结果如下:
从上述结果可以看出我们只需要在 finally 中执行 ThreadLocal 的 remove 方法之后就不会在出现内存溢出的问题了。
remove的秘密
那 remove 方法为什么会有这么大的魔力呢?我们打开 remove 的源码看一下:
public void remove() {
ThreadLocalMap m = getMap(Thread.currentThread());
if (m != null)
m.remove(this);
}
从上述源码中我们可以看出,当调用了 remove 方法之后,会直接将 Thread 中的 ThreadLocalMap 对象移除掉,这样 Thread 就不再持有 ThreadLocalMap 对象了,所以即使 Thread 一直存活,也不会造成因为(ThreadLocalMap)内存占用而导致的内存溢出问题了。
小结
本文我们使用代码的方式演示了 ThreadLocal 内存溢出的问题,严格来讲内存溢出并不是 ThreadLocal 的问题,而是因为没有正确使用 ThreadLocal 所带来的问题。想要避免 ThreadLocal 内存溢出的问题,只需要在使用完 ThreadLocal 后调用 remove 方法即可。