文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

python解析之namedtuple函数的用法

2024-04-02 19:55

关注

【相关推荐:Python3视频教程 】

源码解释:

def namedtuple(typename, field_names, *, rename=False, defaults=None, module=None):
    """Returns a new subclass of tuple with named fields.
    >>> Point = namedtuple('Point', ['x', 'y'])
    >>> Point.__doc__                   # docstring for the new class
    'Point(x, y)'
    >>> p = Point(11, y=22)             # instantiate with positional args or keywords
    >>> p[0] + p[1]                     # indexable like a plain tuple
    33
    >>> x, y = p                        # unpack like a regular tuple
    >>> x, y
    (11, 22)
    >>> p.x + p.y                       # fields also accessible by name
    33
    >>> d = p._asdict()                 # convert to a dictionary
    >>> d['x']
    11
    >>> Point(**d)                      # convert from a dictionary
    Point(x=11, y=22)
    >>> p._replace(x=100)               # _replace() is like str.replace() but targets named fields
    Point(x=100, y=22)
    """

语法结构:

namedtuple(typename, field_names, *, rename=False, defaults=None, module=None)

命名元组,使得元组可像列表一样使用key访问(同时可以使用索引访问)。

collections.namedtuple 是一个工厂函数,它可以用来构建一个带字段名的元组和一个有名字的类.

创建一个具名元组需要两个参数,一个是类名,另一个是类的各个字段的名字。

存放在对应字段里的数据要以一串参数的形式传入到构造函数中(注意,元组的构造函数却只接受单一的可迭代对象)。

命名元组还有一些自己专有的属性。最有用的:类属性_fields、类方法 _make(iterable)和实例方法_asdict()。

示例代码1:

from collections import namedtuple
 
# 定义一个命名元祖city,City类,有name/country/population/coordinates四个字段
city = namedtuple('City', 'name country population coordinates')
tokyo = city('Tokyo', 'JP', 36.933, (35.689, 139.69))
print(tokyo)
 
# _fields 类属性,返回一个包含这个类所有字段名称的元组
print(city._fields)
 
# 定义一个命名元祖latLong,LatLong类,有lat/long两个字段
latLong = namedtuple('LatLong', 'lat long')
delhi_data = ('Delhi NCR', 'IN', 21.935, latLong(28.618, 77.208))
 
# 用 _make() 通过接受一个可迭代对象来生成这个类的一个实例,作用跟City(*delhi_data)相同
delhi = city._make(delhi_data)
 
# _asdict() 把具名元组以 collections.OrderedDict 的形式返回,可以利用它来把元组里的信息友好地呈现出来。
print(delhi._asdict())

运行结果:

示例代码2:

from collections import namedtuple
 
Person = namedtuple('Person', ['age', 'height', 'name'])
data2 = [Person(10, 1.4, 'xiaoming'), Person(12, 1.5, 'xiaohong')]
print(data2)
 
res = data2[0].age
print(res)
 
res2 = data2[1].name
print(res2)

运行结果:

示例代码3:

from collections import namedtuple
card = namedtuple('Card', ['rank', 'suit'])  # 定义一个命名元祖card,Card类,有rank和suit两个字段
class FrenchDeck(object):
    ranks = [str(n) for n in range(2, 5)] + list('XYZ')
    suits = 'AA BB CC DD'.split()  # 生成一个列表,用空格将字符串分隔成列表
 
    def __init__(self):
        # 生成一个命名元组组成的列表,将suits、ranks两个列表的元素分别作为命名元组rank、suit的值。
        self._cards = [card(rank, suit) for suit in self.suits for rank in self.ranks]
        print(self._cards)
 
    # 获取列表的长度
    def __len__(self):
        return len(self._cards)
    # 根据索引取值
    def __getitem__(self, item):
        return self._cards[item]
f = FrenchDeck()
print(f.__len__())
print(f.__getitem__(3))

运行结果:

示例代码4:

from collections import namedtuple
 
person = namedtuple('Person', ['first_name', 'last_name'])
 
p1 = person('san', 'zhang')
print(p1)
print('first item is:', (p1.first_name, p1[0]))
print('second item is', (p1.last_name, p1[1]))

运行结果:

示例代码5: 【_make 从存在的序列或迭代创建实例】

from collections import namedtuple
course = namedtuple('Course', ['course_name', 'classroom', 'teacher', 'course_data'])
math = course('math', 'ERB001', 'Xiaoming', '09-Feb')
print(math)
print(math.course_name, math.course_data)
course_list = [
    ('computer_science', 'CS001', 'Jack_ma', 'Monday'),
    ('EE', 'EE001', 'Dr.han', 'Friday'),
    ('Pyhsics', 'EE001', 'Prof.Chen', 'None')
]
for k in course_list:
    course_i = course._make(k)
    print(course_i)

运行结果:

示例代码6: 【_asdict 返回一个新的ordereddict,将字段名称映射到对应的值】

from collections import namedtuple
person = namedtuple('Person', ['first_name', 'last_name'])
zhang_san = ('Zhang', 'San')
p = person._make(zhang_san)
print(p)
# 返回的类型不是dict,而是orderedDict
print(p._asdict())

运行结果:

示例代码7: 【_replace 返回一个新的实例,并将指定域替换为新的值】

from collections import namedtuple
person = namedtuple('Person', ['first_name', 'last_name'])
zhang_san = ('Zhang', 'San')
p = person._make(zhang_san)
print(p)
p_replace = p._replace(first_name='Wang')
print(p_replace)
print(p)
p_replace2 = p_replace._replace(first_name='Dong')
print(p_replace2)

运行结果:

示例代码8: 【_fields 返回字段名】

from collections import namedtuple
person = namedtuple('Person', ['first_name', 'last_name'])
zhang_san = ('Zhang', 'San')
p = person._make(zhang_san)
print(p)
print(p._fields)

运行结果:

示例代码9: 【利用fields可以将两个namedtuple组合在一起】

from collections import namedtuple
person = namedtuple('Person', ['first_name', 'last_name'])
print(person._fields)
degree = namedtuple('Degree', 'major degree_class')
print(degree._fields)
person_with_degree = namedtuple('person_with_degree', person._fields + degree._fields)
print(person_with_degree._fields)
zhang_san = person_with_degree('san', 'zhang', 'cs', 'master')
print(zhang_san)

运行结果:

示例代码10: 【field_defaults】

from collections import namedtuple
person = namedtuple('Person', ['first_name', 'last_name'], defaults=['san'])
print(person._fields)
print(person._field_defaults)
print(person('zhang'))
print(person('Li', 'si'))

运行结果:

示例代码11: 【namedtuple是一个类,所以可以通过子类更改功能】

from collections import namedtuple
Point = namedtuple('Point', ['x', 'y'])
p = Point(4, 5)
print(p)
class Point(namedtuple('Point', ['x', 'y'])):
    __slots__ = ()
 
    @property
    def hypot(self):
        return self.x + self.y
    def hypot2(self):
        return self.x + self.y
    def __str__(self):
        return 'result is %.3f' % (self.x + self.y)
aa = Point(4, 5)
print(aa)
print(aa.hypot)
print(aa.hypot2)

运行结果:

示例代码12: 【注意观察两种写法的不同】

from collections import namedtuple
 
Point = namedtuple("Point", ["x", "y"])
p = Point(11, 22)
print(p)
print(p.x, p.y)
 
# namedtuple本质上等于下面写法
class Point2(object):
    def __init__(self, x, y):
        self.x = x
        self.y = y
o = Point2(33, 44)
print(o)
print(o.x, o.y)

运行结果:

【相关推荐:Python3视频教程 】

以上就是python解析之namedtuple函数的用法的详细内容,更多请关注编程网其它相关文章!

阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     813人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     354人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     318人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     435人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     224人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯