在深入研究代码之前,我们先要了解支撑决策树的数学概念:熵和信息增益
熵:杂质的量度
熵作为度量来量化数据集中的杂质或无序。特别是对于决策树,熵有助于衡量与一组标签相关的不确定性。数学上,数据集S的熵用以下公式计算:
Entropy(S) = -p_pos * log2(p_pos) - p_neg * log2(p_neg)
P_pos表示数据集中正标签的比例,P_neg表示数据集中负标签的比例。
更高的熵意味着更大的不确定性或杂质,而更低的熵意味着更均匀的数据集。
信息增益:通过拆分提升知识
信息增益是评估通过基于特定属性划分数据集所获得的熵的减少。也就是说它衡量的是执行分割后标签确定性的增加。
数学上,对数据集S中属性a进行分割的信息增益计算如下:
Information Gain(S, A) = Entropy(S) - ∑ (|S_v| / |S|) * Entropy(S_v)
S 表示原始数据集,A表示要拆分的属性。S_v表示属性A保存值v的S的子集。
目标是通过选择使信息增益最大化的属性,在决策树中创建信息量最大的分割。
在Python中实现决策树算法
有了以上的基础,就可以使用Python从头开始编写Decision Tree算法。
首先导入基本的numpy库,它将有助于我们的算法实现。
import numpy as np
创建DecisionTree类
class DecisionTree:
def __init__(self, max_depth=None):
self.max_depth = max_depth
定义了DecisionTree类来封装决策树。max_depth参数是树的最大深度,以防止过拟合。
def fit(self, X, y, depth=0):
n_samples, n_features = X.shape
unique_classes = np.unique(y)
# Base cases
if (self.max_depth is not None and depth >= self.max_depth) or len(unique_classes) == 1:
self.label = unique_classes[np.argmax(np.bincount(y))]
return
拟合方法是决策树算法的核心。它需要训练数据X和相应的标签,以及一个可选的深度参数来跟踪树的深度。我们以最简单的方式处理树的生长:达到最大深度或者遇到纯类。
确定最佳分割属性,循环遍历所有属性以找到信息增益最大化的属性。_information_gain方法(稍后解释)帮助计算每个属性的信息增益。
best_attribute = None
best_info_gain = -1
for feature in range(n_features):
info_gain = self._information_gain(X, y, feature)
if info_gain > best_info_gain:
best_info_gain = info_gain
best_attribute = feature
处理不分割属性,如果没有属性产生正的信息增益,则将类标签分配为节点的标签。
if best_attribute is None:
self.label = unique_classes[np.argmax(np.bincount(y))]
return
分割和递归调用,下面代码确定了分割的最佳属性,并创建两个子节点。根据属性的阈值将数据集划分为左右两个子集。
self.attribute = best_attribute
self.threshold = np.median(X[:, best_attribute])
left_indices = X[:, best_attribute] <= self.threshold
right_indices = ~left_indices
self.left = DecisionTree(max_depth=self.max_depth)
self.right = DecisionTree(max_depth=self.max_depth)
self.left.fit(X[left_indices], y[left_indices], depth + 1)
self.right.fit(X[right_indices], y[right_indices], depth + 1)
并且通过递归调用左子集和右子集的fit方法来构建子树。
预测方法使用训练好的决策树进行预测。如果到达一个叶节点(带有标签的节点),它将叶节点的标签分配给X中的所有数据点。
def predict(self, X):
if hasattr(self, 'label'):
return np.array([self.label] * X.shape[0])
当遇到非叶节点时,predict方法根据属性阈值递归遍历树的左子树和右子树。来自双方的预测被连接起来形成最终的预测数组。
is_left = X[:, self.attribute] <= self.threshold
left_predictions = self.left.predict(X[is_left])
right_predictions = self.right.predict(X[~is_left])
return np.concatenate((left_predictions, right_predictions))
下面两个方法是决策树的核心代码,并且可以使用不同的算法来进行计算,比如ID3 算法使用信息增益作为特征选择的标准,该标准度量了将某特征用于划分数据后,对分类结果的不确定性减少的程度。算法通过递归地选择信息增益最大的特征来构建决策树,也就是我们现在要演示的算法。
_information_gain方法计算给定属性的信息增益。它计算分裂后子熵的加权平均值,并从父熵中减去它。
def _information_gain(self, X, y, feature):
parent_entropy = self._entropy(y)
unique_values = np.unique(X[:, feature])
weighted_child_entropy = 0
for value in unique_values:
is_value = X[:, feature] == value
child_entropy = self._entropy(y[is_value])
weighted_child_entropy += (np.sum(is_value) / len(y)) * child_entropy
return parent_entropy - weighted_child_entropy
熵的计算
def _entropy(self, y):
_, counts = np.unique(y, return_counts=True)
probabilities = counts / len(y)
return -np.sum(probabilities * np.log2(probabilities))
_entropy方法计算数据集y的熵,它计算每个类的概率,然后使用前面提到的公式计算熵。
常见的算法还有:
C4.5 是 ID3 的改进版本,C4.5 算法在特征选择时使用信息增益比,这是对信息增益的一种归一化,用于解决信息增益在选择特征时偏向于取值较多的特征的问题。
CART 与 ID3 和 C4.5 算法不同,CART(Classification And Regression Tree)又被称为分类回归树,算法采用基尼不纯度(Gini impurity)来度量节点的不确定性,该不纯度度量了从节点中随机选取两个样本,它们属于不同类别的概率。
ID3、C4.5 和 CART 算法都是基于决策树的经典算法,像Xgboost就是使用的CART 作为基础模型。
总结
以上就是使用Python中构造了一个完整的决策树算法的全部。决策树的核心思想是根据数据的特征逐步进行划分,使得每个子集内的数据尽量属于同一类别或具有相似的数值。在构建决策树时,通常会使用一些算法来选择最佳的特征和分割点,以达到更好的分类或预测效果。