文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

GIL 的演变:并发 Python 的不断变化格局

2024-03-01 22:11

关注

Python 中的全局解释器锁 (GIL) 自其诞生以来一直是一个备受争议的话题。虽然 GIL 确保了 Python 解释器一次只执行一个线程,从而维护内存安全性,但也限制了并发的可能性。本文将探索 GIL 的演变,从其最初的设计到当前的状态和未来方向。

GIL 的起源

GIL 最初是在 Python 1.5 中引入的,目的是防止多线程同时修改同一对象,从而导致数据损坏。当时,Python 主要用于单核计算机,GIL 并不是一个主要的限制因素。

GIL 的限制

随着多核计算机的普及,GIL 的局限性变得明显。由于 GIL 每次只允许一个线程执行,因此并发代码只能在单个内核上运行。对于需要大量并发的应用程序来说,这可能会导致性能问题。

GIL 的替代方案

为了克服 GIL 的限制,已经开发了许多替代方案:

Python 3.8 中的 GIL 改进

在 Python 3.8 中,引入了对 GIL 的重大改进,提高了并发性能。这些改进包括:

Python 3.10 中的 GIL 改进

Python 3.10 引入了对 GIL 的进一步改进,称为 细粒度 GIL。细粒度 GIL 将 GIL 范围缩小到更细小的代码块,允许更精细的并发控制。这对于需要在频繁的原子操作期间进行并发的应用程序特别有益。

未来展望

GIL 的未来仍然不确定。虽然 Python 开发团队致力于持续改进 GIL,但也有可能在未来版本中完全移除它。替代方案,例如多进程和协程,不断成熟,可能会取代 GIL 作为并发 Python 的首选机制。

演示代码

使用 concurrent.futures 进行并行处理:

import concurrent.futures

def task(n):
    return n * n

with concurrent.futures.ProcessPoolExecutor() as executor:
    results = executor.map(task, range(10))

使用 asyncio 进行协程:

import asyncio

async def task(n):
    return n * n

async def main():
    tasks = [task(n) for n in range(10)]
    results = await asyncio.gather(*tasks)

asyncio.run(main())

总结

GIL 在 Python 并发中的演变是一个复杂而充满挑战的问题。随着 Python 对多核处理和高性能计算的日益重视,GIL 的未来将继续受到密切关注。开发人员需要权衡 GIL 的优点和限制,并根据他们的特定应用程序选择适当的并发机制。通过了解 GIL 的演变,开发人员可以做出明智的决策并创建高效且可扩展的并发 Python 应用程序。

阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     813人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     354人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     318人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     435人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     224人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯