文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

Java 多线程并发编程提高数据处理效率的详细过程

2023-05-14 08:54

关注

?工作场景中遇到这样一个需求:根据主机的 IP 地址联动更新其他模型的相关信息。需求很简单,只涉及一般的数据库联动查询以及更新操作,然而在编码实现过程中发现,由于主机的数量很多,导致循环遍历查询、更新时花费很长的时间,调用一次接口大概需要 30-40 min 时间才能完成操作。

?因此,为了有效缩短接口方法的执行时间,便考虑使用多线程并发编程方法,利用多核处理器并行执行的能力,通过异步处理数据的方式,便可以大大缩短执行时间,提高执行效率。

?这里使用可重用固定线程数的线程池 FixedThreadPool,并使用 CountDownLatch 并发工具类提供的并发流程控制工具作为配合使用,保证多线程并发编程过程中的正常运行:

✨在省略工作场景中的业务逻辑代码后,通用的处理方法示例如下所示:

public ResponseData updateHostDept() {
		// ...
		List<Map> hostMapList = mongoTemplate.find(query, Map.class, "host");
        // split the hostMapList for the following multi-threads task
        // return the number of logical CPUs
        int processorsNum = Runtime.getRuntime().availableProcessors();
        // set the threadNum as 2*(the number of logical CPUs) for handling IO Tasks,
        // if Computing Tasks set the threadNum as (the number of logical  CPUs) + 1
        int threadNum = processorsNum * 2;  
        // the number of each group data 
        int eachGroupNum = hostMapList.size() / threadNum; 
        List<List<Map>> groupList = new ArrayList<>();
        for (int i = 0; i < threadNum; i++) {
            int start = i * eachGroupNum;
            if (i == threadNum - 1) {
                int end = mapList.size();
                groupList.add(hostMapList.subList(start, end));
            } else {
                int end = (i+1) * eachGroupNum;
                groupList.add(hostMapList.subList(start, end));
            }
        }
        // update data by using multi-threads asynchronously
        ExecutorService executorService = Executors.newFixedThreadPool(threadNum/2);
        CountDownLatch countDownLatch = new CountDownLatch(threadNum);
        for (List<Map> group : groupList) {
            executorService.execute(()->{
                try {
                    for (Map map : group) {
                    	// update the data in mongodb
                    }
                } catch (Exception e) {
                    e.printStackTrace();
                } finally {
                	// let counter minus one 
                    countDownLatch.countDown();  
                }
            });
        }
        try {
        	// main thread donnot execute until all child threads finish
            countDownLatch.await();  
        } catch (Exception e) {
            e.printStackTrace();
        }
        // remember to shutdown the threadPool
        executorService.shutdown();  
        return ResponseData.success();
}

?那么在使用多线程异步更新的策略后,从当初调用接口所需的大概时间为 30-40 min 下降到了 8-10 min,大大提高了执行效率。

?需要注意的是,这里使用的 newFixedThreadPool 创建线程池,它有一个缺陷就是,它的阻塞队列默认是一个无界队列,默认值为 Integer.MAX_VALUE 极有可能会造成 OOM 问题。因此,一般可以使用 ThreadPoolExecutor 来创建线程池,自己可以指定等待队列中的线程个数,避免产生 OOM 问题。

public ResponseData updateHostDept() {
		// ...
		List<Map> hostMapList = mongoTemplate.find(query, Map.class, "host");
        // split the hostMapList for the following multi-threads task
        // return the number of logical CPUs
        int processorsNum = Runtime.getRuntime().availableProcessors();
        // set the threadNum as 2*(the number of logical CPUs) for handling IO Tasks,
        // if Computing Tasks set the threadNum as (the number of logical  CPUs) + 1
        int threadNum = processorsNum * 2;  
        // the number of each group data 
        int eachGroupNum = hostMapList.size() / threadNum; 
        List<List<Map>> groupList = new ArrayList<>();
        for (int i = 0; i < threadNum; i++) {
            int start = i * eachGroupNum;
            if (i == threadNum - 1) {
                int end = mapList.size();
                groupList.add(hostMapList.subList(start, end));
            } else {
                int end = (i+1) * eachGroupNum;
                groupList.add(hostMapList.subList(start, end));
            }
        }
        // update data by using multi-threads asynchronously
        ThreadPoolExecutor executor = new ThreadPoolExecutor(5, 8, 30L, TimeUnit.SECONDS, 
                new ArrayBlockingQueue<>(100));
        CountDownLatch countDownLatch = new CountDownLatch(threadNum);
        for (List<Map> group : groupList) {
            executor.execute(()->{
                try {
                    for (Map map : group) {
                    	// update the data in mongodb
                    }
                } catch (Exception e) {
                    e.printStackTrace();
                } finally {
                	// let counter minus one 
                    countDownLatch.countDown();  
                }
            });
        }
        try {
        	// main thread donnot execute until all child threads finish
            countDownLatch.await();  
        } catch (Exception e) {
            e.printStackTrace();
        }
        // remember to shutdown the threadPool
        executor.shutdown();  
        return ResponseData.success();
}

在上述的代码中,核心线程数和最大线程数分别为 5 和 8,并没有设置的很大的值,因为如果如果设置的很大,线程间频繁的上下文切换也会增加时间消耗,反而不能最大程度上发挥多线程的优势。至于如何选择合适的参数,需要根据机器的参数以及任务的类型综合考虑决定。

?最后补充一点,如果想要通过非编码的方式获取机器的 CPU 线程个数也很简单,windows 系统通过任务管理器,选择 “性能”,便可以查看 CPU 线程个数的情况,如下图所示:

?从上图可以看到,我的机器中内核是八个 CPU,但是通过超线程技术一个物理的 CPU 核心可以模拟成两个逻辑 CPU 线程,因此我的机器是支持8核16线程的。

到此这篇关于Java 多线程并发编程提高数据处理效率的文章就介绍到这了,更多相关Java 多线程提高数据处理效率内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     813人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     354人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     318人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     435人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     224人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯