文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

MySQL中的慢查询是什么及有哪些危害

2023-07-04 09:34

关注

本文小编为大家详细介绍“MySQL中的慢查询是什么及有哪些危害”,内容详细,步骤清晰,细节处理妥当,希望这篇“MySQL中的慢查询是什么及有哪些危害”文章能帮助大家解决疑惑,下面跟着小编的思路慢慢深入,一起来学习新知识吧。

一、什么是慢查询

什么是MySQL慢查询呢?其实就是查询的SQL语句耗费较长的时间

具体耗费多久算慢查询呢?这其实因人而异,有些公司慢查询的阈值是100ms,有些的阈值可能是500ms,即查询的时间超过这个阈值即视为慢查询。

正常情况下,MySQL是不会自动开启慢查询的,且如果开启的话默认阈值是10秒

# slow_query_log 表示是否开启mysql> show global variables like '%slow_query_log%';+---------------------+--------------------------------------+| Variable_name       | Value                                |+---------------------+--------------------------------------+| slow_query_log      | OFF                                  || slow_query_log_file | /var/lib/mysql/0bd9099fc77f-slow.log |+---------------------+--------------------------------------+# long_query_time 表示慢查询的阈值,默认10秒show global variables like '%long_query_time%';+-----------------+-----------+| Variable_name   | Value     |+-----------------+-----------+| long_query_time | 10.000000 |+-----------------+-----------+

二、慢查询的危害

既然我们这么关注慢查询,那它肯定是有一些不好的地方,常见的有这几个:

1、用户体验差。

我们访问一个东西,或者保存一个东西,都得等好久,那不得分分钟弃坑?等等,我知道体验是会差,但慢查询的阈值设置为100ms似不似太低了,我访问一个东西1-2秒应该也能接受吧。其实这个阈值并不算太低,因为这是一条SQL的阈值,而你一个接口可能要查好几次SQL,甚至调下外部接口都是很常见的。

2、占用MySQL内存,影响性能

MySQL内存本来就是有限的(大内存要加钱!),SQL为什么查询慢呢?有时候就是因为你全表扫导致查询的数据量很多,再加上各种筛选就变慢了,所以慢查询往往也会意味着内存占用的增高,内存一高,能够承载的SQL查询就变少了,性能也变差了。

3、造成DDL操作阻塞

众所周知,InnoDB引擎默认加的是行锁,但锁其实都是加在索引上的,如果筛选条件没有建立索引,会降级到表锁。而慢查询有一大部分原因都是因为没加索引导致的,所以慢查询时间过长,就会导致表锁的时间也很长,如果这时候执行DDL就会造成阻塞。

三、慢查询常见场景

既然慢查询造成的问题这么多,那一般什么场景下会出现慢查询呢?

1、没加索引/没利用好索引

没加索引的情况,就会造成全表扫描;又或者没走到索引(或者走的不是最优索引),这两张情况都会导致扫描行数增多,从而查询时间变慢。

下面是我测试的一个例子:

# 这是我的表结构,算是一种比较常规的表create table t_user_article(    id          bigint unsigned auto_increment        primary key,    cid         tinyint(2) default 0                 not null comment 'id',    title       varchar(100)                         not null,    author      varchar(15)                          not null,    content     text                                 not null,    keywords    varchar(255)                         not null,    description varchar(255)                         not null,    is_show     tinyint(1) default 1                 not null comment ' 1 0',    is_delete   tinyint(1) default 0                 not null comment ' 1 0',    is_top      tinyint(1) default 0                 not null comment ' 1 0',    is_original tinyint(1) default 1                 not null,    click       int(10)    default 0                 not null,    created_at  timestamp  default CURRENT_TIMESTAMP not null,    updated_at  timestamp  default CURRENT_TIMESTAMP not null on update CURRENT_TIMESTAMP)    collate = utf8mb4_unicode_ci;

在上述表结构下,我通过 [Fill Database](https://filldb.info/) 这个网站随机生成了一批数据进行测验,可以看到,在没加索引的前提下,基本5万条数据后就会开始出现慢查询了(假设阈值为100ms)

数据量字段数量查询类型查询时间
1000*全表(ALL)约80ms
50000*全表(ALL)约120ms
100000*全表(ALL)约180ms

2、单表数据量太大

如果本身单表数据量太大,可能超千万,或者达到亿级别,可能加了索引之后,个别查询还是存在慢查询的情况,这种貌似没啥好办法,要么就看索引设置得到底对不对,要么就只能分表了。

3、Limit 深分页

深分页的意思就是从比较后面的位置开始进行分页,比如每页有10条,然后我要看第十万页的数据,这时候的分页就会比较“深”

还是上面的 t_user_article 表,你可能会遇到这样的一条深分页查询:

-- 个人测试: 106000条数据,耗时约 150msselect * from t_user_article where click > 0 order by id limit 100000, 10;

在这种情况下,即使你的 click 字段加了索引,查询速度可能还是很慢(测试后和不加差不多),因为二级索引树存的是主键ID,查到数据还需要进行回表才能决定是否丢弃,像上面的查询,回表的次数就达到了100010次,可想而知速度是非常慢的。

结合上面的分析,目前的解决思路都是先查出主键字段(id),避免回表,再根据主键查出所有字段。

第一种,延迟关联,此时SQL变为:

-- 个人测试: 106000条数据,耗时约 90msselect * from t_user_article t1, (select id from t_user_article where click > 0 order by id limit 100000, 10) t2  WHERE t1.id = t2.id;

第二种,分开查询,分开查询的意思就是分两次查,此时SQL变为:

-- 个人测试: 106000条数据,耗时约 80msselect id from t_user_article where click > 0 order by id limit 100000, 10;-- 个人测试: 106000条数据,耗时约 80msselect * from t_user_article where id in (上述查询得到的ID)

大家可能会很疑惑,为什么要分开查呢,毕竟分开查可能最终耗时比一次查询还要高!这是因为有些公司(比如我司)可能只对单条SQL的查询时长有要求,但对整体的并没有要求,这时候这种办法就能达到一个折中的效果。

另外,大家在网上可能会看到利用子查询解决的办法,比如改成这样:

select * from t_user_article where id in (select id from t_user_article where click > 0 limit 100000, 10)

但这时候执行你会发现抛出一个错误: “This version of MySQL doesn't yet support 'LIMIT & IN/ALL/ANY/SOME subquery’”,翻译过来就是子查询不支持Limit,解决办法也很简单,多嵌套一层即可:

-- 个人测试: 106000条数据,耗时约 200msselect * from t_user_article where id in (select t.id from (select id from t_user_article where click > 0 order by id limit 100000, 10) as t)

但问题是测试后发现耗时反而变长了,所以并没有列举为一种解决办法。

4、使用FileSort查询

什么是FileSort查询呢?其实就是当你使用 order by 关键字时,如果待排序的内容不能由所使用的索引直接完成,MySQL就有可能会进行FileSort

当查询的数据较少,没有超过系统变量 sort_buffer_size  设定的大小,则直接在内存进行排序(快排);如果超过该变量设定的大小,则会利用文件进行排序(归并)。

FileSort出现的场景主要有以下两种:

4.1 排序字段没加索引

# click 字段此时未加索引explain select id, click from t_user_article where click > 0 order by click limit 10;# explain 结果:type:ALL  Extra:Using where; Using filesort

解决办法就是在 click 字段上加索引。

4.2 使用两个字段排序,但是排序规则不同,一个正序,一个倒序

# click 字段此时已加索引explain select id, click from t_user_article where click > 0 order by click desc, id asc limit 10;# explain 结果:type:range  Extra:Using where; Using index; Using filesort

读到这里,这篇“MySQL中的慢查询是什么及有哪些危害”文章已经介绍完毕,想要掌握这篇文章的知识点还需要大家自己动手实践使用过才能领会,如果想了解更多相关内容的文章,欢迎关注编程网行业资讯频道。

阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     813人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     354人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     318人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     435人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     224人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-数据库
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯