文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

Python实现PDF转换文本详解

2024-04-02 19:55

关注

一、前言

对很多人来说,将PDF转换为可编辑的文本是个刚需,却苦于没有简单的方法。发现 pdf 幻灯片,效果还不错。

传统的讲座通常伴随有很多pdf幻灯片。一般来说,想要对自己的讲座做笔记,需要从pdf复制、补充大量内容。

最近,来自 K1 Digital 的高级机器工程师 Lucas Soares 一直在尝试通过使用 CR(光学字符识别)自动 pdf 幻灯片,以便直接在 Markdown 文件中操作它们的内容,从而避免手动复制和粘贴 pdf 内容,实现这个过程的自动化。

图片

图为项目作者卢卡斯·苏亚雷斯。

1.1、为什么不使用传统的pdf 转文本工具呢?

Lucas Soares 发现传统工具往往会带来更多的问题,需要花时间解决。他曾尝试使用传统的 Python 软件包,但遇到了很多问题(例如必须使用复杂的正则表达式模式解析最终输出等),因此决定尝试使用目标检测和 OCR 来解决。

二、实现过程

基本过程可分为以下几个步骤:

2.1、基于深度学习的 OCR 将 pdf 为文本

2.1.1、将 pdf 转换为图像

Soares 使用的 pdf 幻灯片来自于 David Silver 的增长学习(参见以下 pdf 幻灯片地址)。使用「pdf2image」包将每张幻灯片转换为 png 图像格式。

图片

pdf 幻灯片示例。

地址:https://www.davidsilver.uk/wp-content/uploads/2020/03/intro_RL.pdf

代码如下:


from pdf2image import convert_from_path
from pdf2image.exceptions import (
 PDFInfoNotInstalledError,
 PDFPageCountError,
 PDFSyntaxError
)
pdf_path = "path/to/file/intro_RL_Lecture1.pdf"
images = convert_from_path(pdf_path)
for i, image in enumerate(images):
    fname = "image" + str(i) + ".png"
    image.save(fname, "PNG")

​​​​​经过处理后,所有的pdf幻灯片都转换成png格式的图片:

图片

2.1.2、检测和识别图像中的文本

为了检测和识别png图像中的文本,Soares使用ocr.pytorch库中的文本检测器。按照说明下载模型保存模型保存在检查点文件夹中。

ocr.pytorch 库地址:https://github.com/courao/ocr.pytorch

代码如下:


# adapted from this source: https://github.com/courao/ocr.pytorch
%load_ext autoreload
%autoreload 2
import os
from ocr import ocr
import time
import shutil
import numpy as np
import pathlib
from PIL import Image
from glob import glob
import matplotlib.pyplot as plt
import seaborn as sns
sns.set()
import pytesseract
def single_pic_proc(image_file):
    image = np.array(Image.open(image_file).convert('RGB'))
    result, image_framed = ocr(image)
    return result,image_framed
image_files = glob('./input_images/*.*')
result_dir = './output_images_with_boxes/'
# If the output folder exists we will remove it and redo it.
if os.path.exists(result_dir):
    shutil.rmtree(result_dir)
os.mkdir(result_dir)
for image_file in sorted(image_files):
    result, image_framed = single_pic_proc(image_file) # detecting and recognizing the text
    filename = pathlib.Path(image_file).name
    output_file = os.path.join(result_dir, image_file.split('/')[-1])
    txt_file = os.path.join(result_dir, image_file.split('/')[-1].split('.')[0]+'.txt')
    txt_f = open(txt_file, 'w')
    Image.fromarray(image_framed).save(output_file)
    for key in result:
        txt_f.write(result[key][1]+'\n')
    txt_f.close()

设置输入和输出文件夹,接着遍历所有输入图像(转换后的pdf幻灯片),然后通过single_pic_proc()函数运行OCR模块中的检测和识别模型,最后将输出保存到输出文件夹。

从检测继承(inherit)了Pytorch CTPN,识别了Pytorch CRNN,模型都存在于OCR模块中。

2.1.3、示例输出

代码如下:


import cv2 as cv
output_dir = pathlib.Path("./output_images_with_boxes")
# image = cv.imread(str(np.random.choice(list(output_dir.iterdir()),1)[0]))
image = cv.imread(f"{output_dir}/image7.png")
size_reshaped = (int(image.shape[1]),int(image.shape[0]))
image = cv.resize(image, size_reshaped)
cv.imshow("image", image)
cv.waitKey(0)
cv.destroyAllWindows()

下图左为原始pdf 幻灯片,图右为脑后的输出文本,准确率非常高。

图片

文本识别输出如下:


filename = f"{output_dir}/image7.txt"
with open(filename, "r") as text:
    for line in text.readlines():
        print(line.strip("\n"))

通过上述方法,最终可以得到一个非常强大的工具来讨论文档,从检测和识别手写笔记到检测和识别照片中的随机。

拥有文本的 OCR 工具来处理一些文本内容,这比依赖外部软件来说明文档要好得多。

总结

本篇文章就到这里了,希望能够给你带来帮助,也希望您能够多多关注编程网的更多内容!

阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     807人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     351人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     314人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     433人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     221人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯