文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

决策树和随机森林的理论、实现和超参数调整

2024-12-01 14:55

关注

1. 决策树

决策树是预测建模机器学习的一种重要算法。经典的决策树算法已经存在了几十年,而像随机森林这样的现代变体是最强大的可用技术之一。

通常,这种算法被称为“决策树”,但在R等一些平台上,它们被称为CART。CART算法为bagged决策树、随机森林和boosting决策树等重要算法提供了基础。

与线性模型不同,决策树是非参数模型:它们不受数学决策函数的控制,也没有要优化的权重或截距。事实上,决策树将通过考虑特征来划分空间。

CART模型表示

CART模型的表示是二叉树。这是来自算法和数据结构的二叉树。每个根节点表示一个输入变量(x)和该变量上的一个拆分点(假设变量是数值型的)。

树的叶节点包含一个输出变量(y),用于进行预测。给定一个新的输入,通过从树的根节点开始计算特定的输入来遍历树。

决策树的一些优点是:

决策树的缺点包括:

2. 随机森林

随机森林是最流行和最强大的机器学习算法之一。它是一种集成机器学习算法,称为Bootstrap Aggregation或bagging。

为了提高决策树的性能,我们可以使用许多具有随机特征样本的树。

3.python中的决策树和随机森林实现

我们将使用决策树和随机森林来预测您​​有价值的员工的流失​​。

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
%matplotlib inline


sns.set_style("whitegrid")
plt.style.use("fivethirtyeight")
df = pd.read_csv("WA_Fn-UseC_-HR-Employee-Attrition.csv")

4. 数据处理

from sklearn.preprocessing import LabelEncoder
from sklearn.model_selection import train_test_split




df.drop(['EmployeeCount', 'EmployeeNumber', 'Over18', 'StandardHours'], axis="columns", inplace=True)


categorical_col = []
for column in df.columns:
if df[column].dtype == object and len(df[column].unique()) <= 50:
categorical_col.append(column)
df['Attrition'] = df.Attrition.astype("category").cat.codes


categorical_col.remove('Attrition')


label = LabelEncoder()
for column in categorical_col:
df[column] = label.fit_transform(df[column])


X = df.drop('Attrition', axis=1)
y = df.Attrition


X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)

5. 应用树和随机森林算法

from sklearn.metrics import accuracy_score, confusion_matrix, classification_report


def print_score(clf, X_train, y_train, X_test, y_test, train=True):
if train:
pred = clf.predict(X_train)
print("Train Result:\n================================================")
print(f"Accuracy Score: {accuracy_score(y_train, pred) * 100:.2f}%")
print("_______________________________________________")
print(f"Confusion Matrix: \n {confusion_matrix(y_train, pred)}\n")
elif train==False:
pred = clf.predict(X_test)
print("Test Result:\n================================================")
print(f"Accuracy Score: {accuracy_score(y_test, pred) * 100:.2f}%")
print("_______________________________________________")
print(f"Confusion Matrix: \n {confusion_matrix(y_test, pred)}\n")

5.1 决策树分类器

决策树参数:

from sklearn.tree import DecisionTreeClassifier


tree_clf = DecisionTreeClassifier(random_state=42)
tree_clf.fit(X_train, y_train)


print_score(tree_clf, X_train, y_train, X_test, y_test, train=True)
print_score(tree_clf, X_train, y_train, X_test, y_test, train=False)

5.2决策树分类器超参数调优

超参数max_depth控制决策树的总体复杂性。这个超参数允许在欠拟合和过拟合决策树之间进行权衡。让我们为分类和回归构建一棵浅树,然后再构建一棵更深的树,以了解参数的影响。

超参数min_samples_leaf、min_samples_split、max_leaf_nodes或min_implitity_reduce允许在叶级或节点级应用约束。超参数min_samples_leaf是叶子允许有最少样本数,否则将不会搜索进一步的拆分。这些超参数可以作为max_depth超参数的补充方案。

from sklearn.tree import DecisionTreeClassifier
from sklearn.model_selection import GridSearchCV


params = {
"criterion":("gini", "entropy"),
"splitter":("best", "random"),
"max_depth":(list(range(1, 20))),
"min_samples_split":[2, 3, 4],
"min_samples_leaf":list(range(1, 20)),
}


tree_clf = DecisionTreeClassifier(random_state=42)
tree_cv = GridSearchCV(tree_clf, params, scoring="accuracy", n_jobs=-1, verbose=1, cv=3)
tree_cv.fit(X_train, y_train)
best_params = tree_cv.best_params_
print(f"Best paramters: {best_params})")


tree_clf = DecisionTreeClassifier(**best_params)
tree_clf.fit(X_train, y_train)
print_score(tree_clf, X_train, y_train, X_test, y_test, train=True)
print_score(tree_clf, X_train, y_train, X_test, y_test, train=False)

5.3树的可视化

from IPython.display import Image
from six import StringIO
from sklearn.tree import export_graphviz
import pydot


features = list(df.columns)
features.remove("Attrition")
dot_data = StringIO()
export_graphviz(tree_clf, out_file=dot_data, feature_names=features, filled=True)
graph = pydot.graph_from_dot_data(dot_data.getvalue())
Image(graph[0].create_png())

5.4随机森林

随机森林是一种元估计器,它将多个决策树分类器对数据集的不同子样本进行拟合,并使用均值来提高预测准确度和控制过拟合。

随机森林算法参数:

from sklearn.ensemble import RandomForestClassifier


rf_clf = RandomForestClassifier(n_estimators=100)
rf_clf.fit(X_train, y_train)


print_score(rf_clf, X_train, y_train, X_test, y_test, train=True)
print_score(rf_clf, X_train, y_train, X_test, y_test, train=False)

5.5随机森林超参数调优

调优随机森林的主要参数是n_estimators参数。一般来说,森林中的树越多,泛化性能越好,但它会减慢拟合和预测的时间。

我们还可以调优控制森林中每棵树深度的参数。有两个参数非常重要:max_depth和max_leaf_nodes。实际上,max_depth将强制具有更对称的树,而max_leaf_nodes会限制最大叶节点数量。

n_estimators = [100, 500, 1000, 1500]
max_features = ['auto', 'sqrt']
max_depth = [2, 3, 5]
max_depth.append(None)
min_samples_split = [2, 5, 10]
min_samples_leaf = [1, 2, 4, 10]
bootstrap = [True, False]


params_grid = {'n_estimators': n_estimators, 'max_features': max_features,
'max_depth': max_depth, 'min_samples_split': min_samples_split,
'min_samples_leaf': min_samples_leaf, 'bootstrap': bootstrap}


rf_clf = RandomForestClassifier(random_state=42)


rf_cv = GridSearchCV(rf_clf, params_grid, scoring="f1", cv=3, verbose=2, n_jobs=-1)


rf_cv.fit(X_train, y_train)
best_params = rf_cv.best_params_
print(f"Best parameters: {best_params}")


rf_clf = RandomForestClassifier(**best_params)
rf_clf.fit(X_train, y_train)


print_score(rf_clf, X_train, y_train, X_test, y_test, train=True)
print_score(rf_clf, X_train, y_train, X_test, y_test, train=False)

最后

本文主要讲解了以下内容:

来源:不靠谱的猫内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     813人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     354人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     318人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     435人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     224人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯