文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

java图论普利姆及克鲁斯卡算法解决最小生成树问题详解

2024-04-02 19:55

关注

什么是最小生成树?

最小生成树(Minimum Cost Spanning Tree),简称MST.

最小生成树要求图是连通图。连通图指图中任意两个顶点都有路径相通,通常指无向图。理论上如果图是有向、多重边的,也能求最小生成树,只是不太常见。

普利姆算法 

算法介绍

应用 --> 修路问题 

图解分析 

假设从A村开始

1.从<A>顶点开始处理==============>> <A,G>

A - C[7]   A - G[2]  A - B[5]

2.<A,G>开始,将A和G顶点和他们相邻的还没有访问的顶点进行处理=> <A,G,B,E>

A - C[7]   G - E[4]  G - F[6]  B - D[9]

3.<A,G,B>开始,将A,G,B顶点和他们相邻的还没有访问的顶点进行处理 => <A,G,B,E>

A - C[7]  G - E[4]  G - F[6]   B - D[9]

...........

4.<A,G,B,E> -> F//第4次大循环,对应边<E,F> 权值:5

5.<A,G,B,E,F> -> D//第5次大循环,对应边<F,D>权值:4

6.<A,G,B,E,F,D> -> C//第6次大循环,对应边<A,C>权值:7


public class PrimAlgorithm {
	public static void main(String[] args) {
		// 测试图是否创建成功
		char[] data = new char[] { 'A', 'B', 'C', 'D', 'E', 'F', 'G' };
		int verxs = data.length;
		// 邻接矩阵的关系使用二维数组表示,10000这个大数,表示两个点不连通
		int[][] weight = new int[][] { { 10000, 5, 7, 10000, 10000, 10000, 2 }, { 5, 10000, 10000, 9, 10000, 10000, 3 },
				{ 7, 10000, 10000, 10000, 8, 10000, 10000 }, { 10000, 9, 10000, 10000, 10000, 4, 10000 },
				{ 10000, 10000, 8, 10000, 10000, 5, 4 }, { 10000, 10000, 10000, 4, 5, 10000, 6 },
				{ 2, 3, 10000, 10000, 4, 6, 10000 }, };
		// 创建MGraph对象
		MGraph graph = new MGraph(verxs);
		// 创建一个MinTree对象
		MinTree minTree = new MinTree();
		minTree.createGraph(graph, verxs, data, weight);
		// 输出
		minTree.showGraph(graph);
		// 测试普利姆算法
		minTree.prim(graph, 0);
	}
} 
//创建最小生成树 -> 村庄的图
class MinTree {
	
	public void createGraph(MGraph graph, int verxs, char data[], int[][] weight) {
		int i, j;
		for (i = 0; i < verxs; i++) {
			graph.data[i] = data[i];
			for (j = 0; j < verxs; j++) {
				graph.weight[i][j] = weight[i][j];
			}
		}
	}
	
	public void showGraph(MGraph graph) {
		for (int[] link : graph.weight) {
			System.out.println(Arrays.toString(link));
		}
	}
 	
	public void prim(MGraph graph, int v) {
		// visited[] 标记节点(顶点)是否被访问过
		int visited[] = new int[graph.verxs];
		// visited[] 默认元素的值都是0,表示没有访问过
		for (int i = 0; i < graph.verxs; i++) {
			visited[i] = 0;
		}
		// 把当前这个节点标记为已访问
		visited[v] = 1;
		// h1 和 h2 记录两个顶点的下标
		int h1 = -1;
		int h2 = -1;
		int minWeight = 10000;// 将minWeight初始成一个大数,后面在遍历过程中,会被替换
		for (int k = 1; k < graph.verxs; k++) {// 因为有graph,verxs顶点,普利姆算法结束后,有graph.verxs -1边
			// 这个是确定每一次生成的子图,那个节点和这次遍历的节点距离最近
			for (int i = 0; i < graph.verxs; i++) {// i节点表示被访问过的节点
				for (int j = 0; j < graph.verxs; j++) {// j节点表示还没有访问过的节点
					if (visited[i] == 1 && visited[j] == 0 && graph.weight[i][j] < minWeight) {
						// 替换minWeight(寻找已经访问过的节点和未访问过的节点间的权值最小的边)
						minWeight = graph.weight[i][j];
						h1 = i;
						h2 = j;
					}
				}
			}
			// 找到一条边最小
			System.out.println("边<" + graph.data[h1] + "," + graph.data[h2] + ">权值:" + minWeight);
			// 将当前这个节点标记未已经访问
			visited[h2] = 1;
			// minWeight 重新设置为最大值10000
			minWeight = 10000;
		}
	}
} 
class MGraph {
	int verxs; // 表示图的节点个数
	char[] data; // 存放节点数据
	int[][] weight; // 存放边,就是邻接矩阵
 
	public MGraph(int verxs) {
		this.verxs = verxs;
		data = new char[verxs];
		weight = new int[verxs][verxs];
	}
}

克鲁斯卡尔算法

算法介绍

应用场景 -- 公交站问题 

算法图解 

以上图G4为例,来对克鲁斯卡尔进行演示(假设,用数组R保存最小生成树结果)。

 

算法分析 

根据前面介绍的克鲁斯卡尔算法的基本思想和做法,我们能够了解到,克鲁斯卡尔算法重点需要解决的以下两个问题:

问题一:对图的所有边按照权值大小进行排序。

问题二:将边添加到最小生成树中时,咋样判断是否形成了回路。

问题一很好解决,采用排序算法进行排序即可。

问题二,处理方式是:记录顶点在"最小生成树"中的终点,顶点的终点是"在最小生成树中与它连通的最大顶点"。然后每次需要将一条边添加到最小生成树时,判断该边的两个顶点的终点是否重合,重合的话则会构成回路。

如何判断是否构成回路

举例说明(如图)

代码实现 


public class KruskalCase {
	private int edgeNum;// 边的个数
	private char[] vertexs;// 顶点数组
	private int[][] matrix;// 邻接矩阵
	// 使用INF 表示两个顶点不能连通
	private static final int INF = Integer.MAX_VALUE;
	public static void main(String[] args) {
		char[] vertexs = { 'A', 'B', 'C', 'D', 'E', 'F', 'G' };
		// 克鲁斯卡尔算法的邻接矩阵
		int matrix[][] = {
				
				{ 0, 12, INF, INF, INF, 16, 14 }, { 12, 0, 0, INF, INF, 7, INF },
				{ INF, 10, 0, 3, 5, 6, INF }, { INF, INF, 3, 0, 4, INF, INF },
				{ INF, INF, 5, 4, 0, 2, 8 }, { 16, 7, 6, INF, 2, 0, 9 },
				{ 14, INF, INF, INF, 8, 9, 0 } };
		// 创建KruskalCase 对象实例
		KruskalCase kruskalCase = new KruskalCase(vertexs, matrix);
		// 输出构建的
		kruskalCase.print();
		kruskalCase.kruskal();
	} 
	// 构造器
	public KruskalCase(char[] vertexs, int[][] matrix) {
		// 初始化顶点数和边的个数
		int vlen = vertexs.length;
 
		// 初始化顶点,使用的是复制拷贝的方式
		this.vertexs = new char[vlen];
		for (int i = 0; i < vertexs.length; i++) {
			this.vertexs[i] = vertexs[i];
		} 
		// 初始化边,使用的是复制拷贝的方式
		this.matrix = new int[vlen][vlen];
		for (int i = 0; i < vlen; i++) {
			for (int j = 0; j < vlen; j++) {
				this.matrix[i][j] = matrix[i][j];
			}
		}
		// 统计边的条数
		for (int i = 0; i < vlen; i++) {
			for (int j = i + 1; i < vlen; j++) {
				if (this.matrix[i][j] != INF) {
					edgeNum++;
				}
			}
		}
	}
 	public void kruskal() {
		int index = 0;// 表示最后结果数组的索引
		int[] ends = new int[edgeNum];// 用于保存"已有最小生成树"中的每个顶点在最小生成树中的终点
		// 创建结果数组,保存最后的最小生成树
		EData[] rets = new EData[edgeNum]; 
		// 获取图中所有的边的集合,一共有12条边
		EData[] edges = getEdges();
		System.out.println("图的边的集合=" + Arrays.toString(edges) + "共" + edges.length);		
		//按照边的权值大小进行排序(从小到大)
		sortEdges(edges);		
		//遍历edges数组,将边添加到最小生成树中时,判断准备加入的边是否形成了回路,如果没有,就加入rets,否则不能加入
		for(int i = 0;i < edgeNum;i++) {
			//获取到第i条边的第一个顶点(起点)
			int p1 = getPosition(edges[i].start);
			//获取到第i条边的第2个顶点
			int p2 = getPosition(edges[i].end);
			//获取p1这个顶点在已有最小生成树中的终点
			int m = getEnd(ends, p1);
			//获取p2这个顶点在已有最小生成树中的终点
			int n = getEnd(ends, p2);
			//是否构成回路
			if(m != n) {//没有构成回路
				ends[m] = n;//设置m在"已有最小生成树"中的终点<E,F> [0,0,0,0,5,0,0,0,0,0,0]
				rets[index++] = edges[i];//有一条边加入到rets数组
			}
		}
		//统计并打印"最小生成树",输出rets
		System.out.println("最小生成树为");
		for(int i = 0;i < index;i++) {
			System.out.println(rets[i]);
		}
	} 
	// 打印邻接矩阵
	public void print() {
		System.out.println("邻接矩阵为:\n");
		for (int i = 0; i < vertexs.length; i++) {
			for (int j = 0; j < vertexs.length; j++) {
				System.out.printf("%20d\t", matrix[i][j]);
			}
			System.out.println();
		}
	}
 	
	private void sortEdges(EData[] edges) {
		for (int i = 0; i < edges.length - 1; i++) {
			for (int j = 0; j < edges.length - 1 - i; j++) {
				if (edges[j].weight > edges[j + 1].weight) {// 交换
					EData tmp = edges[j];
					edges[j] = edges[j + 1];
					edges[j + 1] = tmp;
				}
			}
		}
	} 
	
	private int getPosition(char ch) {
		for (int i = 0; i < vertexs.length; i++) {
			if (vertexs[i] == ch) {// 找到
				return i;
			}
		}
		// 找不到,返回-1
		return -1;
	} 
	
	private EData[] getEdges() {
		int index = 0;
		EData[] edges = new EData[edgeNum];
		for (int i = 0; i < vertexs.length; i++) {
			for (int j = i + 1; j < vertexs.length; j++) {
				if (matrix[i][j] != INF) {
					edges[index++] = new EData(vertexs[i], vertexs[j], matrix[i][j]);
				}
			}
		}
		return edges;
	}
	
	private int getEnd(int[] ends, int i) {
		while (ends[i] != 0) {
			i = ends[i];
		}
		return i;
	}
}
//创建一个类EData,它的对象实例就表示一条边
class EData {
	char start;// 边的一个点
	char end;// 边的另外一个点
	int weight;// 边的权值
	// 构造器 
	public EData(char start, char end, int weight) {
		this.start = start;
		this.end = end;
		this.weight = weight;
	} 
	// 重写toString,便于输出边
	@Override
	public String toString() {
		return "EData [start=" + start + ", end=" + end + ", weight=" + weight + "]";
	}
 
}

以上就是java图论普利姆及克鲁斯卡算法解决最小生成树问题详解的详细内容,更多关于图论普利姆及克鲁斯卡算法解决最小生成树的资料请关注编程网其它相关文章!

阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     813人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     354人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     318人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     435人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     224人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯