from sklearn.neighbors import NearestNeighbors
from random import choice
X = np.array([[-1, -1],
[-2, -1],
[-3, -2],
[1, 1],
[2, 1],
[3, 2]])
neigh = NearestNeighbors(n_neighbors = 5)
neigh.fit(X)
N=3
S = np.zeros(shape=(X.shape[0]*(N-1), X.shape[1]))
S = np.vstack((X, S))
print S
for i in xrange(X.shape[0]):
nn = neigh.kneighbors(X[i].reshape(1, -1), return_distance=False)
for n in xrange(N-1):
nn_index = choice(nn[0])
#NOTE: nn includes T[i], we don't want to select it
while nn_index == i:
nn_index = choice(nn[0])
dif = X[nn_index] - X[i]
# print dif
gap = np.random.random()
index = n + i * (N-1)+X.shape[0]
print index
S[index, :] = X[i,:] + gap * dif[:]
print S