运营组的同事最近提出一个需求,希望可以统计出用系统用户及订单情况,于是乎我们很想当然的写出了一个统计SQL,用户表user和行程表直接join,并且针对行程做了group,但SQL执行速度出奇的慢。
explain select users.`mobile_num`, concat(users.`lastName` ,users.`firstName`) as userName, users.`company`,
(case `users`.`idPhotoCheckStatus` when '2' then '已认证' when '3' then '已驳回' else '待认证' end) as `idPhotoCheckStatus`,
(case `users`.`driverLicenseCheckStatus` when '2' then '已认证' when '3' then '已驳回' else '待认证' end) as `driverLicenseCheckStatus`,
(case `users`.`companyCheckStatus` when '2' then '已认证' when '3' then '已驳回' else '待认证' end) as `companyCheckStatus`,
(case `users`.`unionCheckStatus` when '2' then '已认证' when '3' then '已驳回' else '待认证' end) as `unionCheckStatus`,
count(passenger_trip.id) as ptrip_num
from users
left join passenger_trip on passenger_trip.userId = users.id and passenger_trip.status != 'cancel'
left join driver_trip on driver_trip.`userId`=users.`id` and driver_trip.`status` != 'cancel'
where company != '本公司名' and company != '本公司昵称'
当时的第一反应是数据库挂住了,因为用户表的数据量10W左右,行程表的数据也是10W左右,不可能这么慢!通过explain查看分析计划,并且查看过关联字段的索引情况,发现这是一个最常见的关联查询,当然是通过join实现。
转而一想,10W*10W,经过笛卡尔集之后,这不是百亿级的数据筛选吗?!于是换了一种写法进行尝试。
explain select users.`mobile_num`, concat(users.`lastName` ,users.`firstName`) as userName, users.`company`,
(case `users`.`idPhotoCheckStatus` when '2' then '已认证' when '3' then '已驳回' else '待认证' end) as `idPhotoCheckStatus`,
(case `users`.`driverLicenseCheckStatus` when '2' then '已认证' when '3' then '已驳回' else '待认证' end) as `driverLicenseCheckStatus`,
(case `users`.`companyCheckStatus` when '2' then '已认证' when '3' then '已驳回' else '待认证' end) as `companyCheckStatus`,
(case `users`.`unionCheckStatus` when '2' then '已认证' when '3' then '已驳回' else '待认证' end) as `unionCheckStatus`,
(select count(passenger_trip.id) from passenger_trip where passenger_trip.userId = users.id and passenger_trip.status != 'cancel') as ptrip_num,
(select count(driver_trip.id) from driver_trip where driver_trip.userId = users.id and driver_trip.status != 'cancel') as dtrip_num
from users
where company != '本公司名' and company != '公司昵称'
这样的效果居然比直接join快了N倍,执行速度从未知到10秒内返回,查看执行计划:
进一步调整SQL进行尝试:
explain select users.`mobile_num`, concat(users.`lastName` ,users.`firstName`) as userName, users.`company`,
(case `users`.`idPhotoCheckStatus` when '2' then '已认证' when '3' then '已驳回' else '待认证' end) as `idPhotoCheckStatus`,
(case `users`.`driverLicenseCheckStatus` when '2' then '已认证' when '3' then '已驳回' else '待认证' end) as `driverLicenseCheckStatus`,
(case `users`.`companyCheckStatus` when '2' then '已认证' when '3' then '已驳回' else '待认证' end) as `companyCheckStatus`,
(case `users`.`unionCheckStatus` when '2' then '已认证' when '3' then '已驳回' else '待认证' end) as `unionCheckStatus`,
ptrip_num, dtrip_num
from users
left join
(select count(passenger_trip.id) as ptrip_num, passenger_trip.`userId` from passenger_trip where passenger_trip.status != 'cancel' group by passenger_trip.`userId` ) as ptrip
on ptrip.userId = users.id
left join
(select count(driver_trip.id) as dtrip_num, driver_trip.`userId` from driver_trip where driver_trip.status != 'cancel' group by driver_trip.`userId` ) as dtrip
on dtrip.userId = users.id
where company != '本公司名' and company != '公司昵称'
居然5秒内返回,这才是正常的预期,10W级的数据筛选,应该是几秒内返回的!
出现这种差别的原因,其实很简单,SQL语句执行的时候是有一定顺序的。
- from 先选择一个表,构成一个结果集。
- where 对结果集进行筛选,筛选出需要的信息形成新的结果集。
- group by 对新的结果集分组。
- having 筛选出想要的分组。
- select 选择列。
- order by 当所有的条件都弄完了。最后排序。
第一种写法,直接join的结果,就是在100亿条数据中进行筛选;
后面两种则是优先执行子查询,完成10W级别的查询,再进行一次主表10W级的关联查询,所以数量级明显少于第一种写法。