文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

Python Numpy 高效的运算工具详解

2024-04-02 19:55

关注

Numpy 介绍

numpy

num numerical 数值化

py python

ndarray

n 任意个

d dimension 维度

array 数组

n维 相同数组类型的集合

将数据组 转化为 ndarray类型

data = np.array(数组)


import numpy as np
data = np.array([[80,89,65,79],
[80,89,65,79],
[80,89,65,79],
[80,89,65,79],
[80,89,65,79]]
)
data
type(data)

通过 ndarray的形式进行存储

在这里插入图片描述

在这里插入图片描述

优势

存储风格

ndarray 相同类型 通用性差

list 不同类型 通用性强

在这里插入图片描述

并行化运算

nd.array 支持并行化/向量化运算

底层语言

多任务处理: 多线程 多进程

python受到GIL锁限制,拖累限制。

numpy底层用C语言实现,接触GIL锁限制。不受python解释器限制。

numpy常用属性

形状 shape 维度 元素个数

类型 dtype (根据数据类型得知)所占内存的大小

在这里插入图片描述

在这里插入图片描述

ndarray形状

在这里插入图片描述

二维数组

下图(3,3) 三行 三列

在这里插入图片描述

三个 二维数组

在这里插入图片描述

ndarray类型

在这里插入图片描述

创建ndarray时,指定其类型

在这里插入图片描述


data3 = np.array([1.1,2.2,3,3],dtype = 'float32')
data3 = np.array([1.1,2.2,3,3],dtype = np.float32)

不指定的话,整数默认int64,,小数float64。

基本操作

生成数据方法adarrat

总结

本篇文章就到这里了,希望能够给你带来帮助,也希望您能够多多关注编程网的更多内容!

阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     813人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     354人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     318人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     435人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     224人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯