文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

Python德劳内三角剖分详解

2023-05-18 11:49

关注

初步认识

对于熟悉matplotlib三维画图的人来说,最常用的应该是plot_surface,但这个函数的绘图逻辑是,将xy平面映射到z轴,所以没法一次性绘制球,只能把球分成两半,上半球和下半球分别绘制。

如果想一次性绘制封闭图形,则可通过tri_surface,其绘图逻辑便是将图形拆分成一个个三角面,然后在对这些三角面进行绘制。所以,将一个曲面拆分成三角面,便构成了一个非常现实的问题,德劳内三角剖分便是建立在这个问题背景之下的。

scipy.spatial中提供了Delaunay类,下面以二维散点为例,来初步认识一下。

import numpy as np
import matplotlib.pyplot as plt
from scipy.spatial import Delaunay

pts = np.array([[0, 0], [0, 1], [2, 0], [2, 1]])
tri = Delaunay(pts)
plt.triplot(pts[:,0], pts[:,1], tri.simplices)
plt.plot(pts[:,0], pts[:,1], 'o')
plt.show()

效果如下

构造函数和属性

Delaunay的构造函数如下

Delaunay(points, furthest_site=False, incremental=False, qhull_options=None)

各参数含义为

在Delaunay对象中,有下面几个必须知道的常用属性

实战-画个球

想要画个球,第一步是要得到一个球

# N为点数
def getBall(N):
    pts = []
    while len(pts) < N:
        while True:
            u = np.random.uniform(-1, 1)
            v = np.random.uniform(-1, 1)
            r2 = u**2 + v**2
            if r2 < 1:
                break
        x = 2*u*np.sqrt(1-r2)
        y = 2*v*np.sqrt(1-r2)
        z = 1 - 2*r2
        pts.append((x,y,z))
    return np.vstack(pts)

下面测试一下

pts = getBall(200)
ax = plt.subplot(projection='3d')
ax.scatter(pts[:,0], pts[:,1], pts[:,2])
plt.show()  

接下来将这些随机点生成三角面,并进行绘图

tri = Delaunay(pts)

ax = plt.subplot(projection='3d')
for i in tri.simplices:
    ax.plot_trisurf(pts[i, 0], pts[i, 1], pts[i,2])

plt.show()

效果如下

看上去花花绿绿的这些三角形,便是通过德劳内三角剖分得到的,其equations属性可以查看这些三角面的方程参数

>>> tri.equations
array([[-2.35739179e-16, -1.64155539e-15, -1.54600295e-15,
        -1.00000000e+00,  2.41181971e-16],
       [-2.35739179e-16, -1.64155539e-15, -1.54600295e-15,
        -1.00000000e+00,  2.41181971e-16],
       [-2.35739179e-16, -1.64155539e-15, -1.54600295e-15,
        -1.00000000e+00,  2.41181971e-16],
       ...,
       [-2.35739179e-16, -1.64155539e-15, -1.54600295e-15,
        -1.00000000e+00,  2.41181971e-16],
       [-2.35739179e-16, -1.64155539e-15, -1.54600295e-15,
        -1.00000000e+00,  2.41181971e-16],
       [-2.35739179e-16, -1.64155539e-15, -1.54600295e-15,
        -1.00000000e+00,  2.41181971e-16]])
``

到此这篇关于Python德劳内三角剖分详解的文章就介绍到这了,更多相关Python德劳内三角剖分内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     813人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     354人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     318人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     435人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     224人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯