文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

Keras中如何进行模型微调

2024-04-02 19:55

关注

在Keras中进行模型微调通常需要以下步骤:

  1. 加载预训练模型:首先,加载一个预训练的模型,通常是在大规模数据集上进行训练的模型,比如VGG、ResNet、Inception等。
from keras.applications import VGG16

base_model = VGG16(weights='imagenet', include_top=False)
  1. 添加顶层分类器:接下来,在加载的预训练模型上添加一个新的顶层分类器来适应你的特定任务。这个新的分类器通常是全连接层。
from keras.models import Model
from keras.layers import Flatten, Dense

x = base_model.output
x = Flatten()(x)
predictions = Dense(num_classes, activation='softmax')(x)

model = Model(inputs=base_model.input, outputs=predictions)
  1. 冻结预训练模型的权重:为了避免在微调过程中破坏预训练模型学到的特征表示,通常会先冻结预训练模型的权重,只训练新添加的分类器。
for layer in base_model.layers:
    layer.trainable = False
  1. 编译模型并训练:接下来,编译模型并在新的数据集上训练分类器。
model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])

model.fit(X_train, y_train, batch_size=32, epochs=10, validation_data=(X_val, y_val))
  1. 解冻部分层次并微调:在分类器已经训练好的情况下,可以尝试解冻一部分预训练模型的层次,并继续在新数据集上微调整些层。
for layer in model.layers[:10]:
    layer.trainable = True

model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])

model.fit(X_train, y_train, batch_size=32, epochs=10, validation_data=(X_val, y_val))

通过以上步骤,就可以在Keras中进行模型微调。

阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     813人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     354人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     318人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     435人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     224人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯