文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

经验之谈:数据处理与分析的六大 Python 库

2024-11-29 19:08

关注

CleverCSV

CleverCSV是一个有用的Python库,用于处理CSV文件。它可以智能解析、修复错误和清理数据。它解决了常见的CSV文件问题。以下是一个简单的示例,展示如何使用CleverCSV修复CSV文件中的错误。

import clevercsv

with open('data.csv', 'r') as f:
    dialect = clevercsv.Sniffer().sniff(f.read())
    f.seek(0)
    reader = clevercsv.reader(f, dialect)
    for row in reader:
        print(row)

data = [
    ['Name', 'Age', 'City'],
    ['Alice', '25', 'New York'],
    ['Bob', '30', 'San Francisco']
]

with open('output.csv', 'w', newline='') as f:
    writer = clevercsv.writer(f)
    writer.writerows(data)

SciencePlots

SciencePlots是一个用于制作科学图表的Python工具。学术期刊通常有精美的图表。你可能想知道如何制作这样漂亮的图表。这难吗?许多Python绘图工具只关注数据,而不是风格。

SciencePlots填补了这一空白。它专为学术论文图表制作,就像科学和IEEE期刊中的图表一样。

Drawdata

Drawdata是一个在Jupyter Notebook中绘制数据集的Python库。它帮助你轻松地查看你的数据。这在机器学习中非常有用。使用Drawdata,你可以在Jupyter Notebook中制作不同的图表。这有助于你探索数据,进行预处理、特征选择和模型评估。

KnockKnock

KnockKnock是一个方便的Python库。它会告诉你何时训练完成或者如果它崩溃了。使用几行代码就可以轻松设置不同类型的警报。以下是一个简单的示例。

from knockknock import email_sender

# Email configuration settings
email_config = {
    "email_address": "your_email@example.com",
    "password": "your_email_password",
    "smtp_server": "smtp.example.com",
    "smtp_port": 587,
    "to_email": "receiver_email@example.com"
}

@email_sender(**email_config)
def train_model():
    # Code for training the model
    pass

# Call the training function
if __name__ == "__main__":
    train_model()

在这个示例中,我们在train_model函数上使用了一个装饰器。它使用提供的电子邮件设置设置了电子邮件警报。当训练完成或者崩溃时,你将收到一封电子邮件。

Multipledispatch

Multipledispatch是一个Python库,用于方法重载。它允许你根据参数类型选择不同版本的函数。通常,Python函数是根据名称和参数数量来选择的。但是当参数数量相同但类型不同时,这种方法就不起作用了。Multipledispatch解决了这个问题。以下是一个示例。

from multipledispatch import dispatch

@dispatch(int, int)
def add(x, y):
    return x + y

@dispatch(str, str)
def add(x, y):
    return x + y

try:
    print(add(1, 2))     # Output: 3
    print(add("Hello, ", "World!"))     # Output: Hello, World!
except Exception as e:
    print(f"An error occurred: {e}")

在这个示例中,我们定义了两个名为“add”的函数。一个接受两个整数,另一个接受两个字符串。@dispatch装饰器根据参数类型选择正确的函数。

pampy

Pampy是一个简单但功能强大的Python模式匹配库。它用于模式匹配和重构。在常规编码中,我们经常使用if-elif-else语句来处理不同的情况。Pampy提供了一种更清晰的方式来完成这项工作。以下是一个示例。

from pampy import match, _

def process_data(data):
    result = match(data,
        0, "Zero",
        1, "One",
        int, "Other integer",
        list, "List",
        str, lambda s: f"String: {s}",
        _, "Other"
    )
    return result

# Test the function with different inputs
print(process_data(0))  # Output: Zero
print(process_data(1))  # Output: One
print(process_data(42))  # Output: Other integer
print(process_data([1, 2, 3]))  # Output: List
print(process_data("Hello"))  # Output: String: Hello
print(process_data(True))  # Output: Other

在这个示例中,我们定义了一个process_data函数。它处理不同类型的输入数据。我们使用Pampy的match函数来检查输入数据的模式,并相应地进行处理。

来源:小白玩转Python内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     813人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     354人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     318人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     435人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     224人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯