文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

python中的netCDF4批量处理NC文件的操作方法

2024-04-02 19:55

关注

一、使用ArcMap提取出第一期数据

1.使用工具箱中的“Make NetCDF Raster Layer”工具,提取出一个数据

可以发现该数据有正确的像元大小、坐标系等

2.导出该数据作为标准数据

二、使用python批量提取所有数据

1. 查看数据属性

from netCDF4 import Dataset,num2date
infile = "../01Data/Runoff1992-2014/GRUN_v1_GSWP3_WGS84_05_1902_2014.nc"
data_set = Dataset(infile) # 读取nc文件信息
print(data_set)

输出为

<class 'netCDF4._netCDF4.Dataset'>
root group (NETCDF3_CLASSIC data model, file format NETCDF3):
    title: GRUN
    version: GRUN 1.0
    meteorological_forcing: GSWP3
    temporal_resolution: monthly
    spatial_resolution: 0.5x0.5
    crs: WGS84
    proj4: +proj=longlat +ellps=WGS84 +datum=WGS84 +no_defs
    EPSG: 4326
    references: Ghiggi et al.,2019. GRUN: An observation-based global gridded runoff dataset from 1902 to 2014. ESSD, doi: https://doi.org/10.5194/essd-2019-32
    authors: Gionata Ghiggi; Lukas Gudmundsson
    contacts: gionata.ghiggi@gmail.com; lukas.gudmundsson@env.ethz.ch
    institution: Land-Climate Dynamics, Institute for Atmospheric and Climate Science, ETH Zürich
    institution_id: IAC ETHZ
    dimensions(sizes): X(720), Y(360), time(1356)
    variables(dimensions): float64 X(X), float64 Y(Y), float64 time(time), float32 Runoff(time, Y, X)
    groups: 

可以看到variables变量X、Y为经纬度,time为时间,Runoff为需要的结果

2.批量导出结果

from osgeo import gdal
from netCDF4 import Dataset,num2date
import numpy as np

def WriteTiff(im_data,inputdir, path):
    raster = gdal.Open(inputdir)
    im_width = raster.RasterXSize #栅格矩阵的列数
    im_height = raster.RasterYSize #栅格矩阵的行数
    im_bands = raster.RasterCount #波段数
    im_geotrans = raster.GetGeoTransform()#获取仿射矩阵信息
    im_proj = raster.GetProjection()#获取投影信息
    
    if 'int8' in im_data.dtype.name:
        datatype = gdal.GDT_Byte
    elif 'int16' in im_data.dtype.name:
        datatype = gdal.GDT_UInt16
    else:
        datatype = gdal.GDT_Float32
    if len(im_data.shape) == 3:
        im_bands, im_height, im_width = im_data.shape
    elif len(im_data.shape) == 2:
        im_data = np.array([im_data])
        im_bands, (im_height, im_width) = 1, im_data.shape
        # 创建文件
    driver = gdal.GetDriverByName("GTiff")
    dataset = driver.Create(path, im_width, im_height, im_bands, datatype)
    if (dataset != None):
        dataset.SetGeoTransform(im_geotrans)  # 写入仿射变换参数
        dataset.SetProjection(im_proj)  # 写入投影
    for i in range(im_bands):
        dataset.GetRasterBand(i + 1).WriteArray(im_data[i])
    del dataset
infile = "../01Data/Runoff1992-2014/GRUN_v1_GSWP3_WGS84_05_1902_2014.nc"
data_set = Dataset(infile) # 读取nc文件信息
time = data_set.variables["time"][:]  # 获取时间一列
units = data_set.variables["time"].units # 获取第一期时间
#读取样本tif文件的地理信息
intif = "../03ProcessData/runoff_example.tif"
for i in range(0,len(time)):
    yr = num2date(time[i],units).year # 提取年份
    mon = num2date(time[i],units).month    # 提取月份
    value_data = data_set.variables['Runoff'][i]
    # 将缺失值改为0
    data = value_data.data
    mask = value_data.mask
    data[np.where(mask == True)] = 0
    outputname = "../01Data/Runoff1992-2014/tif/" + str(yr) + str(mon).zfill(2) + ".tif"
    WriteTiff(data,intif , outputname)
    print(outputname)

!注意事项

1.使用时候请自行修改修改输入输出文件路径与变量名称

2.根据需要处理缺失值

到此这篇关于python的netCDF4批量处理NC格式文件的操作方法的文章就介绍到这了,更多相关python netCDF4处理NC格式文件内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     807人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     351人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     314人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     433人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     221人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯